
Master Thesis

Operational Characterization of

Weak Memory Consistency Models

Maximilian Senftleben

March 26, 2013

Department of Computer Science,
University of Kaiserslautern,

D 67653 Kaiserslautern,
Germany

Examiner: Prof. Dr. Klaus Schneider
Dipl.-Technoinform. Daniel Baudisch

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema “Operational
Characterization of Weak Memory Consistency Models” selbstständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Kaiserslautern, den 26. März 2013

Maximilian Senftleben

ii

Abstract

This thesis deals with the most common memory consistency
models and provides comparable definitions for some of them.
The relationship between these models is analysed and the dif-
ference between them explained by providing characterising ex-
amples. The primary focus of this thesis is to provide opera-
tional semantics for the most relevant consistency models. This
is achieved by implementing machines which are based on the
consistency model defintions using the synchronous programming
language Quartz. The provided implementations are constructed
to conform with the corresponding definitions in terms of cor-
rectness and completeness. The latter property, completeness,
is desirable for further work which may aim on reducing more
sophisticated implementations on the constructed ones to show
their correctness.

Zusammenfassung

Diese Arbeit behandelt die meistgebräuchlichsten Speicherkon-
sistenzmodelle und gibt vergleichbare Definition für einige dieser.
Die Beziehungen der Modell wird analysisert und derren Unter-
schiede mittels charakterisierender Beispiele erklärt. Der primäre
Fokus der Arbeit ist die Bereitstellung von ausführbarer Se-
mantik für die relevantesten Konsistenzmodelle. Dies wird er-
reicht durch die Implementierung von Maschinen, welche auf
den Definitionen der Speichermodelle basieren, unter der Ver-
wendung der synchronen Programmiersprache Quartz. Die
vorgestellten Implementierungen wurden sowohl hinsichtlich Ko-
rrektheit als auch Vollständigkeit anhand der zugehörigen Defi-
nitionen erstellt. Die Vollständigkeitseigenschaft ist interessant
um in möglicher künftiger Arbeit den Versuch unternehmen zu
können ausgeklügeltere Implementierung auf eine der vorgestell-
ten zurückzuführen um deren Korrektheit zu zeigen.

iv

Contents

1. Introduction 1

2. Related Work 5

3. Consistency Models 7
3.1. Local Consistency (LC) . 8
3.2. Slow Consistency . 8
3.3. Pipelined-RAM (PRAM) Consistency / Global Process Order (GPO) 10
3.4. PRAM-M Consistency . 11
3.5. Cache Consistency (CC) / Global Data Order (GDO) 12
3.6. Global Write-read-write Order (GWO) . 13
3.7. Global Anti-Order (GAO) . 14
3.8. Causal Consistency / GPO+GWO . 15
3.9. Processor Consistency by Goodman (PC-G) 15
3.10. GPO + GDO Consistency . 17
3.11. Processor Consistency by DASH (PC-D) . 18
3.12. Partial Store Ordering (PSO) . 19
3.13. Total Store Ordering (TSO) . 20
3.14. Sequential Consistency (SC) . 21
3.15. Overview/Relationship . 23

4. Reference Machines 31
4.1. Common Structural Elements . 31
4.2. Local Consistency Reference Machine . 33
4.3. Slow Consistency Reference Machine . 35
4.4. PRAM Consistency Reference Machine . 36
4.5. Cache Consistency Reference Machine . 38
4.6. Causal Consistency Reference Machine . 40
4.7. Processor (PC-G) Consistency Reference Machine 43
4.8. PSO Consistency Reference Machine . 45
4.9. TSO Consistency Reference Machine . 45
4.10. Sequential Consistency Reference Machine . 46

5. Implementations 49
5.1. Environment . 49
5.2. Interface . 49
5.3. Non-Determinism . 49
5.4. (Un)Bounded Buffer . 49
5.5. Improvements . 50

v

Contents

6. Conclusions and Further Work 51

A. Quartz Implementations 53
A.1. Remarks . 53
A.2. Shared modules . 53
A.3. RefLocal : Local Consistency Reference Machine 60
A.4. RefSlow : Slow Consistency Reference Machine 62
A.5. RefPRAM : PRAM Consistency Reference Machine 64
A.6. RefCache : Cache Consistency Reference Machine 66
A.7. RefCausal : Causal Consistency Reference Machine 67
A.8. RefProcessor : PC-G Consistency Reference Machine 70
A.9. RefPSO : PSO Consistency Reference Machine 72
A.10.RefTSO : TSO Consistency Reference Machine 74
A.11.RefSequential : Sequential Consistency Reference Machine 76

Bibliography 79

vi

1. Introduction

With multiprocessor systems, the historical assumption of a sequential consistent memory
system becomes more and more a bottleneck for memory latency. While some programs rely
on sequential consistency, many programs could execute properly with weaker consistency
constraints and therefore justify the research of such models.

Historically, a computer architecture was considered to consist of a single processing unit and
a single memory connected via a single bus (Von Neumann architecture 1945). The single
bus enforces that each memory read operation returns the value most recently written to
that location. Even if the processor alternatingly executes multiple processes, the memory
operations take place one after the other and form a sequence.

Nowadays a computer architecture may consist of multiple processors which share a common
main memory. Early multiprocessor systems connected multiple processors via a single bus to
a shared memory such that processors had to compete for bus access. Therefore the memory
operations of all processes formed a sequence as well. Newer multiprocessor systems became
more complex as the individual processors started to cache memory operations or otherwise
tried to increase their performance. In distributed systems, the assumption of a single memory
is given up in favor of multiple memories which are shared between all processors as so called
distributed shared memory.

Multiple processes interact via shared memory to synchronize with each other. For instance,
if two processes share a resource which only may be accessed by one process at a time, then
it must be ensured that one process does not use the resource if it is already in use by the
other one. As an example, the following simple program tries to solve that problem:

bool p1 in c s , p 2 i n c s ;

p roce s s P1 {
i f (p 2 i n c s == f a l s e) {

p 1 i n c s = true ;
c r i t i c a l o p e r a t i o n s ;
p 1 i n c s = f a l s e ;

}
}

proce s s P2 {
i f (p 1 i n c s == f a l s e) {

p 2 i n c s = true ;
c r i t i c a l o p e r a t i o n s ;
p 2 i n c s = f a l s e ;

}
}

The problem that may occur is that process P1 reads variable p2 in cs = false, then P2
reads variable p1 in cs = false and then both enter the critical section, both assuming that
they are the only one.

This problem is called the mutual exclusion problem and was first correctly solved by T.J.
Dekker and presented by E.W. Dijkstra in 1965 [Dijk68]. The resulting algorithm, known as
Dekker’s algorithm, is as follows:

1

1. Introduction

// i n i t i a l l y f a l s e
bool f l ag1 , f l ag2 , turn ;

p roce s s P1 {
f l a g 1 = true ;
whi l e (f l a g 2 == true) {

i f (turn != f a l s e) {
f l a g 1 = f a l s e ;
whi l e (turn != f a l s e) {}
f l a g 1 = true ;

}
}

c r i t i c a l o p e r a t i o n s ;

turn = true ;
f l a g 0 = f a l s e ;

n o n c r i t i c a l o p e r a t i o n s ;
}

proce s s P2 {
f l a g 2 = true ;
whi l e (f l a g 1 == true) {

i f (turn != true) {
f l a g 2 = f a l s e ;
whi l e (turn != true) {}
f l a g 2 = true ;

}
}

c r i t i c a l o p e r a t i o n s ;

turn = f a l s e ;
f l a g 1 = f a l s e ;

n o n c r i t i c a l o p e r a t i o n s ;
}

This algorithm enables a process to detect when an other process has the intention to enter or
currently resides in the critical section. If both processes did not enter the critical section yet
then the algorithm determines which process may proceed and which one has to wait using
variable turn.

Dekker’s algorithm works for multi-threaded uniprocessor and the mentioned single-bus-based
multiprocessor systems, but it may fail on other multiprocessor systems, e.g. systems with
processors that buffer memory operations in write-back caches, if no further constraints for
the memory systems are given. In such a system, both process P1 and P2 may set their flag
variable to true but both keep the write operation in their cache and read the value of the
other’s flag variable from main memory as false. As a consequence both processes enter the
critical section. Dekker’s algorithm failed for the considered multiprocessor system.

There are two ways to handle this problem:

• Either the multiprocessor system’s memory management must be modified to behave
equivalent to a multi-threaded uniprocessor. This behaviour is called sequential con-
sistency and if a multiprocessor system provides sequential consistent behaviour then
Dekker’s algorithm works as intended. A technique to enable multiprocessor systems
which use write-back caches to provide sequential consistent behaviour is the so called
MESI protocol [PaPa98]. MESI is named after the four states each cache line can have:
Modified, Exclusive, Shared, and Invalid. Variations of MESI are used in many modern
CPUs, e.g. Intel’s Pentium 4 [IA313].

• An alternative way to handle the problem is to accept that there may exist multipro-
cessor systems with non-sequential memory behaviour. To utilise these systems despite
their lack of sequential consistency, each system has to define its memory behaviour.
These definitions can act as some sort of interface that guarantees programmers the cor-

2

rect execution of their programs. Such interfaces are called memory consistency models
and determine which relaxations or optimizations are possible and in which way the
system behaves different to a sequential consistent one.

A memory consistency model can be defined in different ways. It can be defined in an
operational way by providing a machine structure and related interconnection rules or by
revealing an implementation of such a system. For instance, Lipton and Sandberg [LiSa88]
provided an implementation for PRAM by defining its structure and communication rules.
The consistency model of such a machine is defined as the set of executions it may produce
for given programs.

A method of defining a consistency model indirectly is to define a set of rules for program-
mers to ensure sequential consistency, for example with Sequential Consistency Normal Form
(SCNF) by Adve [Adve93]. An implementation of a memory system complies with the consis-
tency model if each program satisfying the given rules is guaranteed to behave like a sequential
consistent system. This type of definition has the benefit that if a given system can be op-
timized in a way that programs which respect the definition’s rules still behave sequential
consistent, then the optimized version can replace the prior version without requiring the
programmer to make adjustments.

Another way of defining a consistency model is to define which ordering of memory operations
the memory and processes are allowed to observe. One possibility is to define the model by
providing rules which must be satisfied by the ordering of all operations as observed by the
main memory. For example this is done for the SPARC memory models TSO and PSO in an
axiomatic way. This is done by providing 6 axioms (TSO) respectively 7 axioms (PSO) which
if satisfied by an ordering on all memory operations imply a consistent execution. Yet another
possibility is a view-based definition which defines rules on the ordering of each process’ own
operations and others’ write operations. Such definitions (e.g. given by Steinke and Nutt in
[StNu04]) allow a simple comparison of different memory models and abstract from the inner
structure of memory systems.

Weak memory models emerged from the endeavours to optimize the latency of memory sys-
tems. Improvements weakened the underlying sequential model in a way that some incon-
sistent states became reachable. These improvements and new concepts became new weak
memory models. To use the benefits of the new models they must be defined in a way that
programmers can write or adjust their programs such that potential inconsistent states of the
memory system are avoided and the executions produce the intended results.

In this thesis, some known consistency models described in the literature [ABHN91, BaBe97,
Good91, HuAh90, Lamp79, LiSa88, SPAR91] are characterized in an operational manner
by specifying reference machines. These reference machines are obtained by deriving mem-
ory system implementations directly from the consistency model definitions. The resulting
reference machines do not aim to be efficient but try to be as minimalistic as possible (in
terms of different components and structures, not necessarily size) to simplify verification of
correctness and completeness of the implementation.

Apart from the benefit of such easy-to-understand definitions of different memory consistency
models for educational purposes, such reference machines may be the basis of attempts to
classify or verify the consistency class of an arbitrary memory system.

3

1. Introduction

4

2. Related Work

Most parts of this thesis are based on the Unified Theory of Shared Memory Consistency
by Steinke and Nutt [StNu04] which offers view-based definitions for many common memory
consistency models. Furthermore it reveals underlying properties which suffice to describe
the presented models.

Similar to this work Higham, Kawash and Verwaal [HiKV98] provided definitions and compar-
isons of some consistency models and defined machines for the models. Their implementations
lack some details (e.g. “switch” functionality) and the work leaves some questions unanswered
(e.g. sizes of FIFOs).

[BaBe97] characterizes different consistency models in a view based way for non-synchronized
(“pure”) memory models and presents formal definitions for some synchronized (“hybrid”)
memory models as well. Ahamad et al. [ABJK+93] compares different view-based definitions
of processor consistency by Goodman and the DASH system.

Sindhu, Frailong and Cekleov [SiFC92] present a formal framework for axiomatic definitions of
memory consistency models and provide definitions for sequential, PSO and TSO consistency.

[Mosb93a] gives a brief overview of some weak memory models and discusses their influence
on programming language and compiler design. Adve [Adve93] provides sequential consis-
tency normal form, a programmer-centric approach to specify memory models. Adve and Hill
[AdHi93] describe a shared-memory model that guarantees sequential consistency for data-
race-free programs and which unifies four earlier models. Adve and Gharachorloo [AdGh96]
give an overview over memory consistency related issues, describe existing and possible re-
laxations of a sequential consistency.

In [BoPe09] an approach to formalize a memory model as a part of weak operational semantics
is presented and proved to work as intended for data-race free programs.

Loewenstein et al. [LoCM06] presents a technique to verify a memory model’s (TSO) be-
haviour against its axiomatic definition. Linden and Wolper [LiWo11] describe an approach
to memory fence insertion in programs to execute correctly under weak memory systems
(TSO,PSO) based on verification techniques (finite state automata based verification tool).
The TSOtool described by Hangal et al. [HVML+04] offers a test platform to check pseudo-
randomly generated test programs run on a memory system against the TSO specification.

Owens et al. describe x86-TSO [OwSS09], a new model for x86 processors which is based on
the SPARCv8 TSO model [SPAR91]. Sewell et al. [SSON+10] present and compare x86-TSO
with recent Intel and AMD specifications and address data-race-freedom for x86-TSO.

5

2. Related Work

6

3. Consistency Models

Consistency models can be defined by the set of executions they allow for a given set of
processes.

In the following section, a formalism for specifying memory models is introduced, formal
definitions of common memory consistency models are given, and their relationships are
analysed.

To argue about memory models, a formalism is needed which is able to cover all aspects of a
memory operation:

• access mode (read, write)

• issuer (process issuing the operation)

• location (memory address)

• value

The following “view”-based formalism is taken from Steinke and Nutt which itself is based
on Ahamad et al.[ABJK+93] and Bataller and Bernabeu[BaBe97]: A “view”-based definition
focuses on the view of a process with respect to the memory system. If a process can observe a
behaviour which conflicts with the consistency properties, then the execution may be rejected.
This kind of definition does not give any implementation details but only requires the system
to provide a view for each connected process which satisfies the consistency properties.

Definition 3.1 (Shared Memory Formalism). [StNu04, Appendix A]
An execution is a set of processes P, a set of shared variables V, a set of operations O,
and two partial orders on O: process order <PO, and writes-to order 7→.
An operation is a tuple (op,i,x,v) where op ∈ {r, w} (read,write), i ∈ P , x ∈ V , and v is
a valid value for x. The operation (w, ε, x,⊥) is called the initial write of x.

Several functions are defined on the operation tuple: type(o) returns the type of operation
o, var(o) returns the variable of operation o, val(o) returns the value of an operation o
and proc(o) returns the process of operation o.

Local order for process i <i is a relation such that(
∀oj ,ok∈(r,∗,∗,∗)(oj <i ok ⊕ ok <i oj)

)∧(
∀x∈V,o∈(∗,i,∗,∗)(w, ε, x,⊥) <i o

)
.

Process order <PO is a relation such that <PO=
⋃
i∈P

<i.

Writes-to order 7→ is a relation such that ∀o∈(r,∗,∗,∗)∃i∈P [(w, i, var(o), val(o)) 7→ o].

A relation <serial is a serial view SerialV iew (< |O′) on operations O′ ⊆ O which respects
< iff
<⊆<serial ∧∀o1,o2∈O′ (o1 <serial o2 ⊕ o2 <serial o1) and
∀r∈O′∃w∈O′ (w 7→ r ∧ w <serial r∧ 6 ∃w2∈O′ (var(w2) = var(r) ∧ w <serial w2 <serial r))

7

3. Consistency Models

In this formalism, an execution represents the result and context of multiple processes (P)
that issue operations (O) on shared variables (V) to a memory system. Each operation is
assigned to a single process and is either a read from a given memory address or a write with
a target address and value. The formalism defines three orders: 1) the local order (<i) defines
the sequence in which operations of a single process (i) are issued to the memory system, 2)
the process order is the union of all processes’ local orders, and 3) the writes-to order orders
each read operation after a write operation which writes the value to the memory the read
operation reads. Important for the following definitions is the notion of a serial view. A
serial view (SerialView) on an execution is a total order (view) on a subset of the execution’s
operations which represents the order in which the process sees the memory operations. A
read in a serial view must read from the most recent preceding write to the same variable
(serial).

3.1. Local Consistency (LC)

Local consistency was first defined by Heddaya and Sinha [HeSi92] as the weakest constraint
that could be required of a shared memory system. It requires that each process observes all
operations as if they were executed on a single processor. It enforces that a process’ write
can be observed by itself.

Local Consistency [HeSi92, BaBe97] is defined by Steinke and Nutt [StNu04, Theorem 3.8]
as follows:

Definition 3.2. An execution is locally consistent iff

∀i∈P∃SerialV iew (<i| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

An execution is locally consistent iff each process observes operations in a serial view which or-
ders its own operations in program order and other processes’ write operations in an arbitrary
order.

Example Figure 3.1a shows an execution which is locally consistent because of the existence
of the following SerialViews:

[P1]: write(x,1), write(x,2)
[P2]: write(x,2), read(x,2), write(x,1), read(x,1)

Remark: The example is not slow consistent which is shown later.

3.2. Slow Consistency

Hutto and Ahamad [HuAh90] introduced slow consistency to eliminate consistency mainte-
nance which leads to high latency. Having other weak memory models in mind they showed
that even for their weaker model, slow consistency, techniques exist to solve the exclusion
and dictionary problem. With those techniques, slow consistency may be used to increase

8

3.2. Slow Consistency

write(x,1) read(x,2)

write(x,2) read(x,1)

(a) Local

write(x,1) write(x,2)

write(x,3)

write(y,1) read(y,1)

read(x,2) read(x,1)

(b) Slow

write(x,1) read(x,1)

read(y,1) write(y,1)

(c) SC

Figure 3.1.: Examples for locally, slowly, and sequentially consistent executions

memory latency for many multiprocess programs relying on the mentioned problems. Slowly
consistent memory allows writes to propagate slowly to other processes.

Slow consistency [HuAh90] is defined as follows: A read returns a previously written value,
and successive reads to the same location may not return writes issued earlier (by the process
that issued the earlier write) than the read one. Furthermore, local writes must be visible
immediately. Slow consistency is formally defined in Steinke and Nutt’s formalism for shared
memory consistency models [StNu04, Theorem 3.7]:

Definition 3.3. An execution is slowly consistent iff

∀i∈P,x∈V ∃SerialV iew (<PO| (∗, i, x, ∗) ∪ (w, ∗, x, ∗))

An algorithm which solves the n-process exclusion problem for slowly consistent systems was
provided by Hutto and Ahamad [HuAh90] and is given in pseudo-code as follows:

// i n i t i a l l y f a l s e
bool [n] req , ack ;

p roce s s P i {
req [i] = true ;
whi l e (ack [i] == f a l s e) {}
c r i t i c a l o p e r a t i o n s ;
ack [i] = f a l s e ;
n o n c r i t i c a l o p s ;

}

proce s s MutexServer {
whi le (t rue) {

f o r (i n t i = 0 . . n−1) {
i f (req [i] == true) {

req [i] = f a l s e ;
ack [i] = true ;
whi l e (ack [i] == true) {}

}
}

}
}

Example Figure 3.1b shows an execution which is slowly consistent because the following
SerialViews exist:

[P1, x]: write(x,1), write(x,3), write(x,2), read(x,2) [P1, y]: write(y,1)
[P2, x]: write(x,2), write(x,1), read(x,1), write(x,3) [P2, y]: write(y,1), read(y,1)

Remark: The example is neither PRAM nor cache consistent which is shown later.

Figure 3.1a is not slowly consistent because the 7→ relation requires read(x,2) to happen
after write(x,2) but read(x,1) to happen before write(x,2), which is not allowed due to
read(x, 2) <PO read(x, 1).

9

3. Consistency Models

3.3. Pipelined-RAM (PRAM) Consistency / Global Process Order
(GPO)

One of the first common weak memory models described was PRAM (Pipelined RAM), which
was presented 1988 by Lipton and Sandberg [LiSa88, LiSa94]. They show that their shared
memory system PRAM scales better than sequentially consistent systems as it is immune
to high network latency. Additionally, synchronization costs remain low while performance
increases significantly.

Original PRAM [LiSa88] definition by Lipton and Sandberg [LiSa88]:

Definition 3.4. Consider n processes P1, . . . , Pn with a local memory M1, . . . ,Mn each.
Process k executes a read from location i “by performing a normal read from location i” of
its own memory Mk. Process k executes a write to location i with value v “by performing
a local action and initializing a global action. Locally, it does a normal write to [Mk] at
location i with value v. Globally, it sends a message < i, v > to all the other processors.”

PRAM consistency (equivalent to GPO) based on the Steinke and Nutt [StNu04, Theorem
3.2, Definition 4.1] (which itself uses the definition of Ahamad et al. [ABJK+93]) is as follows:

Definition 3.5. An execution is PRAM consistent / Global Process Order (GPO) iff

∀i∈P∃SerialV iew (<PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

In a PRAM consistent execution, every process observes the writes of an other process in the
order they were issued. But two different processes may see writes of several processes in a
different order.

A system implementing PRAM consistency therefore only has to assure that the communica-
tion from one process to another does not reorder or lose writes, while the transmission delay
is not critical.

Example Figure 3.2a shows an execution which is PRAM consistent:

[P1]: write(x,1), read(x,1), write(x,2) [P2]: write(x,2), read(x,2), write(x,1)

Remark: The example is neither GWO nor cache consistent (and therefore neither causal nor
processor consistent either) which is shown in the corresponding sections.

Figure 3.2b shows another execution which is PRAM consistent:

[P1]: write(x,2), write(x,1), write(y,1), read(y,1), read(x,1)
[P2]: write(x,1), read(x,1), write(x,2), write(y,1) [P3]: write(x,1), write(x,2), read(x,2), write(y,1)

Remark: The example is however not PRAM-M consistent which is shown later.

Figure 3.1b is not PRAM consistent because the 7→ relation requires the write(y,1) to happen
before the read(y,1) and the read(x,1) before the write(x,3), which is not possible because
write(x,3) <PO write(y,1) and read(y,1) <PO read(x,1).

10

3.4. PRAM-M Consistency

read(x,1) read(x,2)

write(x,2) write(x,1)

(a) PRAM

write(x,1) read(x,1)

write(x,2) read(x,2)

read(y,1) write(y,1)

read(x,1)

(b) PRAM (2)

read(x,1)

write(x,2) read(x,2)

write(x,1) read(x,1)

(c) PRAM-M

write(x,0) read(x,1) read(y,1)

read(x,0)1 read(z,1)

write(x,1)

write(z,1) write(y,1) read(x,0)2

(d) Cache

read(x,2)1 write(x,1) read(x,1)2

read(x,1)1 write(x,2) read(x,2)2

(e) GWO

write(x,0) read(x,1) read(y,1)

write(x,1) write(y,1) read(x,0)

(f) GAO

Figure 3.2.: Examples for PRAM, cache, GWO, and GAO consistent executions

Figure 3.2d shows an execution which is not PRAM consistent because write(x, 1) <PO

write(z, 1) 7→ read(z, 1) <PO read(x, 0)2 implies write(x, 1) appears before read(x, 0) such
that no SerialView exists for P3.

Figure 3.2e gives an example of an execution which is not PRAM consistent because the view
P3 has on the writes of P2 does not comply with <PO.

Figure 3.4a shows another example of an execution which is not PSO consistent because in
a SerialView for P1 the following order on y would be required: read(y, 1) < write(y, 2) <
read(y, 2) < write(y, 3) < read(y, 3), but the constraints write(x, 1) < write(y, 3) < read(y, 3) <
read(x, 0) and write(x, 0) < read(y, 1) < write(y, 2) < write(x, 1) would not allow a Seri-
alView respecting <PO.

3.4. PRAM-M Consistency

The informal definition (Definition 3.4) of PRAM consistency by Lipton and Sandberg [LiSa88]
led to different interpretations which represent different consistency models. In contrast to the
preceding definition of PRAM based on Ahamad et al., the definition of Mosberger [Mosb93b]
assumes that a process k’s write first updates the local memory Mk and afterwards broadcasts
it to other processes and that reads are explicitly blocking. To distinguish this definition from
the previous one, it is named PRAM-M in this thesis.

Definition 3.6. Two operations are ordered by local write-read-write order, o1 <
(i)
lwo o2,

iff process(o1) = i ∧ (o1, o2) ∈ (7→ ∪ <PO)∗

(* means the transitive closure)

Definition 3.7. An execution is PRAM-M consistent iff

∀i∈P∃SerialV iew
(
<PO ∪ <(i)

lwo |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)
)

11

3. Consistency Models

Example Figure 3.2c gives an example of a PRAM-M consistent execution:

[P1]: write(x,1), write(x,2) [P2]: write(x,1), read(x,1), write(x,2)
[P3]: write(x,2), read(x,2), write(x,1), read(x,1)

Remark: The example is however neither cache nor GWO consistent which is shown in the
corresponding sections.

Figure 3.2b is not PRAM-M consistent as for P1 no SerialView exists as write(x, 1) <
(i)
lwo

write(x, 2) <
(i)
lwo write(y, 1) conflicts with read(y, 1) <i read(x, 1).

3.5. Cache Consistency (CC) / Global Data Order (GDO)

In 1989 Goodman [Good91] provided a definition for cache consistency, which he called Weak
Consistency as he implied that it would be the weakest form of consistency. Furthermore he
mentioned that no synchronization guarantees would be possible with CC which is disproved
by the existence of algorithms for exclusion even for slow consistency.

Cache consistency [Good91] and the equivalent GDO consistency are formally defined in
Steinke and Nutt [StNu04, Theorem 3.3,Definition 4.4] as follows:

Definition 3.8. An execution is cache consistent iff
∀x∈V ∃SerialV iew (<PO| (∗, ∗, x, ∗))

Definition 3.9. Two operations are ordered by data order, o1 <DO o2, iff var(o1) =
var(o2) and either: o1 <PO o2 or o1 7→ o2 or ∃r∈(r,∗,∗,∗)var(r) = var(o1) ∧ val(r) 6=
val(o1) ∧ o1 <PO r ∧ o2 7→ r or ∃o∈Oo1 <DO o <DO o2

Definition 3.10. An execution is Global Data Order (GDO) iff:
∀i∈P∃SerialV iew (<i ∪ <DO| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Each process observes the same ordering on memory operations regarding the same memory
location, but processes may see operations regarding different memory locations in different
orders.

Example Figure 3.2d shows an execution which is cache consistent:

[x]: write(x,0), read(x,0)1, read(x,0)2, write(x,1), read(x,1)
[y]: write(y,1), read(y,1) [y]: write(z,1), read(z,1)
[P1]: write(x,0), read(x,0)1, write(x,1), write(z,1), write(y,1)
[P2]: write(x,0), write(x,1), read(x,1), write(z,1), write(y,1)
[P3]: write(y,1), read(y,1), write(z,1), read(z,1), write(x,0), read(x,0)2, write(x,1)

Remark: The example is neither PRAM nor GWO nor PSO (and therefore neither PC-G nor
PC-D nor causal) consistent which is shown in the corresponding sections.

12

3.6. Global Write-read-write Order (GWO)

Figure 3.1b shows an execution which is not cache consistent because the 7→ relation requires
the read(x,1) to happen before the write(x,3) and the write(x,2) after the write(x,3), which
is not possible because write(x,2) <PO read(x,1).

Figure 3.2a cannot be cache consistent because <PO ∪ 7→ |(∗, ∗, x, ∗) forms a cycle so that no
Serialization may exist.

Figure 3.2e gives an example of an execution which is not cache consistent because no total
order respecting <PO on the operations regarding variable x can be formed: no matter which
order is chosen for write(x,1) and write(x,2), it either conflicts with P1’s or P3’s operations.

Figure 3.3a shows an execution which is not cache consistent because P2 and P3 see a different
ordering of the writes, so that no total order of the operations regarding x is possible.

Figure 3.2c is not cache consistent because there exists no SerialView for x as write(x, 1) has
to be ordered before write(x, 2) and read(x, 1) after write(x, 2).

3.6. Global Write-read-write Order (GWO)

GWO was defined by Steinke and Nutt in their Unified theory of Shared Memory Con-
sistency [StNu04]. They introduced the GWO property along with three other properties
(GPO,GDO,GAO) which can be combined to define different consistency models.

Definition 3.11. Two writes are ordered by write-read-write order, w1 <WO w2, iff
there exists a read r, such that w1 7→ r <PO w2

Definition 3.12. An execution is Global Write-read-write Order (GWO) iff
∀i∈P∃SerialV iew (<i ∪ <WO| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

The write-read-write order orders two writes if a read exists which reads from the first write
and is issued before the second write by the same processor. An execution is GWO if a process
sees all writes which are ordered by write-read-write order in the given order along all own
operations in the order it issued them.

Example Figure 3.2e gives an example of an execution which is GWO consistent:

[P1]: write(x,2), read(x,2), write(x,1), read(x,1) [P2]: write(x,1), write(x,2)
[P3]: write(x,1), read(x,1), write(x,2), read(x,2)

Remark: The example is neither PRAM nor Cache nor PSO (and therefore neither PC-G nor
PC-D nor causal) consistent which is shown in the corresponding sections.

Figure 3.2a is not GWO consistent because <0 ∪ <WO ∪ 7→ |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗) forms a
cycle which excludes the existence of a SerialView.

Figure 3.2d shows an execution which is not GWO consistent as write(x, 0) <WO write(x, 1) <WO

write(y, 1) and read(y, 1) < read(x, 0)2 exclude the existence of a SerialView.

13

3. Consistency Models

An example for an execution which is not GWO is given in Figure 3.3b. It cannot be GWO
consistent because write(x,1) <WO write(x,2) <WO write(z,1) which conflicts with read(z,1)
<i read(x,1).

Figure 3.4b shows another example of an execution which is not GWO consistent as no Se-
rialView for P2 respecting write(x, 0) <WO write(x, 1) <WO write(y, 1) and read(y, 1) <PO

read(x, 0) can exist, the example cannot be GWO consistent.

The execution in Figure 3.4c is not GWO as write(y, 0) <WO write(y, 1) <WO write(x, 1) <WO

write(y, 2) prevents a SerialView of P1 which respects <WO and <i.

Figure 3.2c is not GWO consistent because there exists no SerialView for P3 as write(x, 1)
has to be ordered before write(x, 2) and read(x, 1) after write(x, 2).

3.7. Global Anti-Order (GAO)

GAO was the fourth basic property defined by Steinke and Nutt [StNu04]. It is an extension
to GDO, as they showed that GPO, GDO, and GWO together are not sufficient to describe
sequential consistency. GPO+GAO+GWO however is equivalent to sequential consistency.

Definition 3.13. A Serial Order <SO is a minimum partial order that satisfies:

∀w,r∈O
(
(var(w) = var(r) ∧ val(w) 6= val(r))⇒

(
w <SO w′ 7→ r ∨ r <SO w

))

Definition 3.14. Two writes are ordered by Anti Order, w1 <AO(<SO) w2, iff

∃r1,r2∈O
[
w1 7→ r1 <PO r2 <DO w2

∨ w1 7→ r1 <PO r2 <SO w2

∨ w1 7→ r1 <SO w2

∨ w1 <PO r1 <DO w2

∨ w1 <PO r1 <SO w2

]

Definition 3.15. An execution is Global Anti-Order (GAO) iff

∀i∈P∃SerialV iew
(
<i ∪ <SO ∪ <AO(<SO)| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)

)

Example Figure 3.2f gives an example of an execution which is GAO consistent.

Remark: The example is not PSO consistent which is shown in the corresponding section.

Figure 3.4d gives an example of an execution that is not GAO consistent: For <SO only
the pairs write(x, 1), read(x, 0) and write(y, 1), read(y, 0) and write(y, 0), read(y, 0) must be
considered:

14

3.8. Causal Consistency / GPO+GWO

write(x, 1) <SO write(x, 0) conflicts with P1’s <i so choose read(x, 0) <SO write(x, 1).
write(y, 1) <SO write(y, 0) conflicts with P2’s <i so choose read(y, 0) <SO write(y, 1).
read(y, 1) <SO write(y, 0) with <i would not allow a SerialView for P1
so choose write(y, 0) <SO write(y, 1) instead.
write(x, 0) <PO write(x, 1) <PO read(y, 0) <DO write(y, 1) leads to:
write(x, 0) <AO(<SO) write(y, 1) and write(x, 1) <AO(<SO) write(y, 1)
read(x, 0) <SO write(x, 1), read(y, 0) <SO write(y, 1) implies:
write(y, 0) <AO(<SO) write(y, 1) and write(x, 0) <AO(<SO) write(x, 1)
For P2: <AO(<SO) and <i require write(x, 0) to occur before write(x, 1) and write(x, 1) before
read(x, 0) which excludes the existence of a SerialView which respects <AO(<SO) and <i.

3.8. Causal Consistency / GPO+GWO

Causal memory is based on potential causality defined by Lamport [Lamp78] which defines a
partial order on all memory operations. The partial order orders operations that are causally
related, which enhances the former mentioned write-read-write order by process order (for
other processes). Causal memory enforces that if a process writes a value after reading some
writes’ values, which potentially influenced the write, then all processes reading that write
must have observed those other writes before as well.

The definition of causal consistency [ABHN91] taken from Steinke and Nutt [StNu04] is as
follows:

Definition 3.16. An execution is causally consistent iff

∀i∈P∃SerialV iew (<i ∪ <PO ∪ <WO|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Example Figure 3.3a shows an execution which is causally consistent:

[P1]: write(x,1), read(x,1), write(x,2), read(x,2) [P2]: write(x,1), write(x,2)
[P4]: write(x,2), read(x,2), write(x,1), read(x,1) [P3]: write(x,2), write(x,1)

Remark: The example is not cache consistent (and therefore not PC-G either) which is shown
in the corresponding section.

3.9. Processor Consistency by Goodman (PC-G)

Goodman gave a definition of processor consistency which is a consistency model stronger
than both cache consistency and PRAM consistency but weaker than sequential consistency.
As there exists multiple consistency models that differ slightly from Goodman’s definition but
are also called processor consistency the abbreviation PC-G is used for Goodman’s definition.

Goodman’s definition of processor consistency [Good91] and the equivalent GPO+GDO’ con-
sistency based on Theorem 3.4 from Steinke and Nutt [StNu04] is as follows:

15

3. Consistency Models

write(x,1) write(x,2)

read(x,1) read(x,2)

read(x,2) read(x,1)

(a) Causal

write(x,1) read(x,1)1 read(x,2) read(y,1)

write(x,2) write(y,1) read(x,1)2

(b) PC-G (1)

write(x,0) write(y,0)

write(x,1) write(y,1)

write(z,1) write(z,2)

read(y,0) read(x,0)

(c) GPO+GDO

write(x,1) read(y,1) read(v,1) write(z,1)

write(x,2) write(z,2)

write(y,1) read(z,1) read(x,1) write(v,1)

(d) PC-G (2)

write(x,1) write(y,1)

write(x,2) write(y,2)

write(z,1) write(z,2)

read(y,1) read(x,1)

(e) PC-D

Figure 3.3.: Examples for causally, PC-G, GPO+GDO, and PC-D consistent executions

Definition 3.17. An execution is processor consistent (PC-G) iff

∀x∈V ∃ <x= SerialV iew (<PO| (∗, ∗, x, ∗))

∧∀i∈P∃SerialV iew
(

(∪x∈V <x)
⋃

<PO

∣∣∣(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)
)

Definition 3.18. An order is an augmented data order <DO′ iff: <DO⊆<DO′ and
∀o1,o2∈O (var(o1) = var(o2)⇒ o1 <DO′ o2 ∨ o2 <DO′ o1)

Definition 3.19. An execution is GPO+GDO’ iff

∀i∈P∃SerialV iew (<PO ∪ <DO′ | (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Example An example for a PC-G consistent execution is given in Figure 3.3b:

[x]: write(x,1), read(x,1), read(x,1), write(x,2), read(x,2)
[y]: write(y,1), read(y,1)
[P1]: write(x,1), write(x,2), write(y,1)
[P2]: write(x,1), read(x,1), write(x,2), write(y,1)
[P3]: write(x,1), write(x,2), read(x,2), write(y,1)
[P4]: write(x,1), write(y,1), read(y,1), read2(x,1), write(x,2)

Remark: The example is neither GWO nor PSO consistent which is shown in the correspond-
ing sections.

Figure 3.3d is PC-G consistent, because the required SerialViews exist:

16

3.10. GPO + GDO Consistency

[x]: write(x, 1), read(x, 1), write(x, 2) [y]: write(y, 1), read(y, 1)
[z]: write(z, 1), read(z, 1), write(z, 2) [v]: write(v, 1), read(v, 1)
[P1]: write(x, 1), write(x, 2), write(y, 1), write(z, 1), write(z, 2), write(v, 1)
[P2]: write(x, 1), write(x, 2), write(y, 1), read(y, 1), write(z, 1), read(z, 1), write(z, 2), write(v, 1)
[P3]: write(z, 1), write(z, 2), write(v, 1), read(v, 1), write(x, 1), read(x, 1), write(x, 2), write(y, 1)
[P4]: write(z, 1), write(z, 2), write(v, 1), write(x, 1), write(x, 2), write(y, 1)

Remark: The example is not PC-D consistent which is shown in the corresponding section.

Figure 3.3c cannot be PC-G because PC-G requires a total order on all operations on z,
but if write(z, 1) is ordered before write(z, 2) then write(x, 1) would be ordered before
read(x, 0), otherwise if write(z, 2) is ordered before write(z, 1) then write(y, 1) would be
before read(y, 0).

Another example for an execution which is not PC-G is given in Figure 3.4c: PC-G requires
a SerialView on each variable:

[x]1: write(x, 0), read(x, 0), write(x, 1), read(x, 1)
[x]2: write(x, 1), read(x, 1), write(x, 0), read(x, 0)
[y]: write(y, 0), read(y, 0), read(y, 0), write(y, 1), read(y, 1), read(y, 1), write(y, 2), read(y, 2)

Neither one of the possible SerialViews [x]1 nor [x]2 allows P1 to have a SerialView that
respects it together with [y] and <PO. Therefore it cannot be PC-G.

Figure 3.3e is not PC-G consistent as there exists no SerialView for z which allows SerialViews
for both processes. If write(z, 1) is ordered before write(z, 2) then no SerialView for P2 ex-
ists as write(x, 1) <PO write(x, 2) <PO write(z, 1) conflicts with write(z, 2) <PO read(x, 1),
otherwise if write(z, 2) is ordered before write(z, 1) then no SerialView for P1 exists as
write(y, 1) <PO write(y, 2) <PO write(z, 2) conflicts with write(z, 1) <PO read(y, 1). There-
fore, the example cannot be PC-G consistent.

3.10. GPO + GDO Consistency

GPO+GDO is a model described by Steinke and Nutt [StNu04] as combination of the prop-
erties GPO and GDO (PRAM and cache consistency). It is however not equivalent to PC-G
as there exist executions which are GPO+GDO but not PC-G consistent. However, it is very
close to PC-G, and Steinke and Nutt argue that GPO+GDO should be chosen as definition.

The definition of GPO+GDO [StNu04] and an equivalent modified version of PC-G is as
follows:

Definition 3.20. An execution is GPO+GDO iff

∀i∈P∃SerialV iew (<i ∪ <PO ∪ <DO|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Definition 3.21. An execution is PC-G’ iff

∀i∈P
(
∀x∈V ∃ <x= SerialV iew (<PO| (∗, ∗, x, ∗))

∧ ∃SerialV iew
(

(∪x∈V <x)
⋃

<PO

∣∣∣(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)
))

17

3. Consistency Models

An example for an execution which is GPO+GDO is given in Figure 3.3c.

Remark: The example is not PC-G which is shown in the corresponding section. It is also an
example of a cache and PRAM consistent execution which is not PC-G.

3.11. Processor Consistency by DASH (PC-D)

The Stanford DASH multiprocessor system [LLGW+92] implements a variation of processor
consistency hereafter called PC-D which is incomparable with PC-G [ABJK+93, GLLG+90].
Gharachorloo et al.’s [GLLG+90] definition differs from PC-G by weakening process order by
allowing a process’ read to outrun a write of the same process but on a different location.
Furthermore PC-D enforces a different ordering on write operations.

View-based definition of PC-D [GLLG+90] by Ahamad et al. [ABJK+93]:

Definition 3.22. Two operations are ordered by weak-process-order, o1 <wpo o2, iff

o1 <PO o2

∧
(
var(o1) = var(o2) ∨ type(o1) = type(o2)

∨ (type(o1) = r ∧ type(o2) = w) ∨ ∃o′o1 <wpo o
′ <wpo o2

)

Definition 3.23. Two operations are ordered by weak-writes-before-order, o1 <wwb o2, iff

type(o1) = w ∧ type(o2) = r ∧ ∃o′
(
o1 <wpo o

′ ∧ o′ 7→ o2
)

Definition 3.24. Two operations are ordered by weak-reads-before-order, o1 <wrb o2,
with respect to the SerialViews <x, x ∈ V iff

type(o1) = r ∧ type(o2) = w ∧ ∃o′∈(w,∗,∗,∗)
(
o1(∪x∈V <x)o′ ∧ o′ <wpo o2

)

Definition 3.25. An execution is processor consistent (PC-D) iff

∀x∈V ∃ <x= SerialV iew (<PO| (∗, ∗, x, ∗))
∧∀i∈P∃SerialV iew (<wpo ∪ <wwb ∪ <wrb ∪ ((∪x∈V <x)|(w, ∗, ∗, ∗))|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Example Figure 3.3e gives an example of a PC-D consistent execution.

18

3.12. Partial Store Ordering (PSO)

3.12. Partial Store Ordering (PSO)

Partial Store Ordering is one memory model used in SPARC architectures. It provides a
better performance than the default TSO, but is defined as optional only in the architecture
manual, so not all SPARC architectures may provide PSO. It allows to reorder writes after
writes of different locations and writes after reads.

In the following, a simplified and modified axiomatic definition from the SPARC Architecture
manual [SPAR91, SiFC92] for PSO [SPAR91] consistency is given. ‘Simplified’ means that
the original definition uses 7 axioms, but three of them (Atomicity, Termination, StoreStore)
are irrelevant for this consideration. Atomicity only concerns Swap operations which are not
covered in this pure model definition of TSO, Termination gives a guarantee that a store
will eventually be written to the memory and removed from the store buffer, and StoreStore
considers STBAR instructions which are also not covered by this pure model definition.
‘Modified’ means that the axioms have been rewritten to fit the formalism used in this paper:

Definition 3.26. An execution is PSO if there exists a memory order ≤ which respects:

• Order: (w, i, x, v1) ≤ (w, j, y, v2) ∨ (w, i, y, v2) ≤ (w, j, x, v1)

• Value:

val
(
(r, i, a, x)

)
= val

(
Max≤

[
{(w, j, a, y)|(w, j, a, y) <PO (r, i, a, x)}∪
{(w, j, a, y)|(w, j, a, y) ≤ (r, i, a, x)}

])
• LoadOp: r ∈ (r, i, ∗, ∗), o ∈ (∗, i, ∗, ∗) r <PO o⇒ r ≤ o
• StoreStoreEq: ∀x∈V ∀w1,w2∈(write,i,x,∗)w1 <PO w2 ⇒ w1 ≤ w2

PSO consistency is best explained by describing a possible computer architecture: Each
process has a store buffer for each memory location which buffers writes before writing them
to memory. If a process reads a location for which a write exists in the corresponding store
buffer then it reads the latest write’s value from that store buffer, otherwise it reads the value
from memory.

An execution is PSO consistent if a process observes its own operations in program order and
there exists a total order on all write operations which is observed by all processes regarding
others’ writes. Also a process may not observe all writes of other processes as these may be
hidden by own writes in its store buffer.

Example Figure 3.4a shows an example of an execution which is PSO consistent what can
easily be seen if write(x, 0) is buffered by P1.

Remark: The example is not PRAM consistent which is shown in the corresponding section.

It can be seen that the execution in Figure 3.4b is PSO consistent if write(x, 1) is buffered
by P1.

Remark: The example is not GWO consistent which is shown in the corresponding section.

Figure 3.2d shows an execution which is not PSO consistent because P3 has no writes and

19

3. Consistency Models

write(x,0) write(y,1)

read(y,1) write(y,2)

read(y,2) write(x,1)

read(y,3) write(y,3)

read(x,0)

(a) PSO (1)

write(x,0)

read(x,0)

write(x,1) read(y,1)

read(x,1) read(x,0)

write(y,1)

(b) PSO (2)

write(x,0) write(y,0)

read(y,0) read(y,0)

write(y,1)

read(y,1) read(y,1)

write(x,1)

read(y,2) read(x,1)

read(x,0) write(y,2)

(c) TSO (1)

write(x,0) write(y,0)

write(x,1) write(y,1)

read(y,0) read(x,0)

read(y,1)

(d) TSO (2)

Figure 3.4.: Examples for PSO, and TSO consistent executions

this way no writes may be hidden and therefore it is implied that read(x, 1) appears before
read(x, 0)2 in the Serialization which therefore cannot be a SerialView.

Figure 3.2e gives an example of an execution which is not PSO as P1 and P3 have different
views on the writes of P2 where no serialization <W on all writes may exist.

Figure 3.2f gives another example of an execution which is not PSO consistent because if P2
reads write(x, 1), both writes of P1 have already been written to main memory and if P3
reads write(y, 1) all three writes of P1 and P2 have also been written to memory, therefore
P3 cannot read write(x, 0).

Another example for an execution which is not PSO is given in Figure 3.3b.

3.13. Total Store Ordering (TSO)

Total Store Ordering is the default memory model of SPARC architectures. The SPARC
architecture manual [SPAR91] states that every implementation has to offer TSO. TSO allows
the reordering of stores after loads.

In the following a simplified and modified axiomatic definition by [SPAR91, SiFC92] for TSO
[SPAR91] consistency is given. ‘Simplified’ means that the original definition uses 6 axioms,
but two of them (Atomicity, Termination) are irrelevant for this consideration. Atomicity only
concerns Swap operations which are not covered in this definition of TSO and Termination
gives a guarantee that a store will eventually be written to the memory and removed from
the store buffer. ‘Modified’ means that the axioms have been rewritten to fit the formalism
used in this paper:

Definition 3.27. An execution is TSO if there exists a memory order ≤ which respects:

• Order: (w, i, x, v1) ≤ (w, j, y, v2) ∨ (w, i, y, v2) ≤ (w, j, x, v1)

• Value:

val
(
(r, i, a, x)

)
= val

(
Max≤

[
{(w, j, a, y)|(w, j, a, y) <PO (r, i, a, x)}∪
{(w, j, a, y)|(w, j, a, y) ≤ (r, i, a, x)}

])
• LoadOp: r ∈ (r, i, ∗, ∗), o ∈ (∗, i, ∗, ∗) r <PO o⇒ r ≤ o
• StoreStore: w1, w2 ∈ (write, i, ∗, ∗) w1 <PO w2 ⇒ w1 ≤ w2

20

3.14. Sequential Consistency (SC)

A view-based definition of TSO [SPAR91] consistency based on the axioms in [SPAR91,
SiFC92, LoCM06] is proposed as follows:

Definition 3.28.

W
(i)
Inv =

{
w |proc(w) 6= i ∧ @r ∈ (r, i, ∗, ∗) : w 7→ r

∧
[
∃w′ ∈ (w, i, ∗, ∗) : w <W w′ ∧ var(w) = var(w′)

∧ @w′′ ∈ (w, j, ∗, ∗), j 6= i, r ∈ (r, i, ∗, ∗) : w <W w′′ <W w′ ∧ w′′ 7→ r ∧ r <i w
′]}

Proposition 3.1. An execution is TSO consistent iff

∃ <W= SerialV iew (<PO|(w, ∗, ∗, ∗))
∧

∀i∈P∃SerialV iew
(
<i ∪ (<W \(w, ∗, ∗, ∗)× (w, i, ∗, ∗))

∣∣∣((w, ∗, ∗, ∗) \W (i)
inv

)
∪ (∗, i, ∗, ∗)

)

TSO consistency is best explained by describing a possible architecture: Each process has a
store buffer which buffers writes before writing them to memory in order. If a process reads
a location for which a write exists in its store buffer, then it reads the latest value from the
store buffer, otherwise it reads the value from memory.

An execution is TSO consistent if a process observes its own operations in program order
and there exists a total order on all write operations which respects program order and is
observed by all processes regarding others’ writes. Also a process may not observe all writes
of other processes as they may be hidden by own writes in its store buffer.

Example An example for a TSO consistent execution is given in Figure 3.4c. It can be easily
seen that the example is TSO consistent if only write(x, 0) is buffered.

Remark: The example is neither PC-G nor GWO consistent which is shown in the corre-
sponding sections.

Figure 3.4d gives an example of an execution that is TSO consistent. If only write(x, 1) is
kept in the store buffer then it is clear that the execution is TSO.

Remark: The example is not GAO consistent which is shown in the corresponding section.

3.14. Sequential Consistency (SC)

Sequential consistency was defined by Lamport [Lamp79]. He states that an execution on a
multiprocessor system may not produce the desired results while each process itself executes its
program correctly. Therefore he introduces two implementation requirements which enforce
sequential consistency:

• R1: Each processor issues memory requests in the order specified by its program.

21

3. Consistency Models

• R2: Memory request from all processors issued to an individual memory module are
serviced from a single FIFO queue. Issuing a memory request consists of entering the
request in this queue.

The definition of sequential consistency [Lamp79] according to [StNu04] is:

Definition 3.29. An execution is sequentially consistent iff
∃SerialV iew(<PO)

A system is sequentially consistent if for all executions, there exists a sequential order which
respects process order and leads to the same result as the execution.

Example Figure 3.1c gives an example of a sequentially consistent execution. It is SC as the
following SerialView respecting <PO exists: write(x, 1), read(x, 1), write(y, 1), read(y, 1).

22

3.15. Overview/Relationship

3.15. Overview/Relationship

Local

Slow

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO Causal

PC-G PC-D

SC

Figure 3.5.: Relationship overview over the presented consistency models

Figure 3.5 illustrates the relationship between the described consistency models. An arrow
indicates that the model the arrow originates from implies the model the arrow points at. A
model implies an other model if all executions accepted by this model are excepted by the
other one.

The relationship of local, slow, PRAM (GPO), cache (GDO), GWO, causal (GPO+GWO),
GPO+GDO and sequential consistency is shown by Steinke and Nutt [StNu04].

In the following, the relationship of PSO and TSO to the other models is shown.

3.15.1. PSO

Theorem 3.1. TSO ⇒ PSO : all TSO consistent executions are PSO consistent.

Proof. It is easy to see that a TSO system behaves like a PSO system which writes values
from its store buffers to main memory in the same order the process’ single store buffer

23

3. Consistency Models

of the TSO system does.

Theorem 3.2. PSO 6⇒ TSO : some PSO consistent executions are not TSO consistent.

Proof. Figure 3.4b gives a counterexample which is PSO consistent but not TSO consis-
tent, it is explained in Section 3.12 that the example is PSO. It cannot be TSO because
when P2 reads the value of write(y, 1) all of P1’s writes must have been written back from
the store buffer, therefore P2 observes write(x, 0) <PO write(x, 1) and cannot observe
read(x, 0) afterwards.

Theorem 3.3. PSO ⇒ CC : all PSO consistent executions are cache consistent.

Proof. Assume a PSO consistent execution. Then the main memory sees a sequential or-
der<W of all writes and all unbuffered reads. If all operations from this order are excluded
except the operations regarding variable x, then the resulting order <x

W clearly respects
<PO. If <PO is limited to only operations regarding variable x then buffered reads always
follow the corresponding writes without any other intermediate operations regarding x
in between. If those buffered reads are inserted directly after their corresponding write
into <x

W , then the resulting order <x is a sequentialization of all operations regarding x
which respects <PO. Therefore, the execution is cache consistent.

Theorem 3.4. CC 6⇒ PSO - some cache consistent executions are not PSO consistent.

Proof. Figure 3.2d shows an example of an execution which is cache consistent but not
PSO consistent, which is explained in Section 3.5 and 3.12.

Theorem 3.5. PSO 6⇒ PRAM - some PSO consistent executions are not PRAM consis-
tent.

Proof. Figure 3.4a shows an example of an execution which is PSO consistent but not
PRAM consistent, which is explained in Section 3.12 and 3.3.

Theorem 3.6. PRAM 6⇒ PSO - some PRAM consistent executions are not PSO consis-
tent.

Proof. Assuming PRAM ⇒ PSO. Using PSO ⇒ CC follows PRAM ⇒ CC because
PRAM is incomparable to CC as seen in the examples at Sections 3.5 and 3.3. Therefore,
the assumption must be incorrect.

24

3.15. Overview/Relationship

Theorem 3.7. PSO 6⇒ GWO - some PSO consistent executions are not GWO consistent.

Proof. Figure 3.4b shows an example of an execution which is PSO consistent, but not
GWO consistent, which is explained in Sections 3.12 and 3.6.

Theorem 3.8. GWO 6⇒ PSO - some GWO consistent executions are not PSO consistent.

Proof. Assuming GWO ⇒ PSO. Using PSO ⇒ CC follows GWO ⇒ CC because
GWO is incomparable to CC as seen in the examples at Sections 3.5 and 3.6. Therefore,
the assumption must be incorrect.

Theorem 3.9. PSO 6⇒ GAO - some PSO consistent executions are not GAO consistent.

Proof. Counterexample:

write(x,0)

read(x,0) read(y,1)

write(x,1)

read(y,⊥) read(x,0)

write(y,1)

The example is clearly PSO if only write(x,1) is kept in the corresponding store buffer.
It is not GAO because write(x, 0) <PO read(x, 0) <DO write(x, 1) <PO read(y,⊥) <DO

write(y, 1) implies write(x, 0) <AO(<SO) write(x, 1) <AO(<SO) write(y, 1), and thus no
SerialView for P2 exists which respects <AO(<SO) and <i as read(y, 1) <i read(x, 0)
conflicts with the mentioned <AO(<SO).

Theorem 3.10. GAO 6⇒ PSO - some GAO consistent executions are not PSO consistent.

Proof. Figure 3.2f shows an example of an execution which is GAO consistent, but not
PSO consistent, which is explained in Sections 3.7 and 3.12.

3.15.2. TSO

Theorem 3.11. TSO ⇒ PRAM - all TSO consistent executions are PRAM consistent.

Proof. Assuming TSO consistency.
TSO implies the existence of a total order <W on all writes which respects <PO. As
every process sees its own writes in program order <i and all other processes’ write in

25

3. Consistency Models

order <W , it is implied that every process sees all writes in an order which respects <PO

which implies PRAM consistency.

Theorem 3.12. PRAM 6⇒ TSO - some PRAM consistent executions are not TSO con-
sistent.

Proof. Assuming PRAM ⇒ TSO. Using TSO ⇒ PSO and PSO ⇒ CC follows
PRAM ⇒ CC because PRAM is incomparable to CC as seen in the examples at
Sections 3.5 and 3.3. Therefore, the assumption must be incorrect.

Theorem 3.13. TSO 6⇒ GWO - some TSO consistent executions are not GWO consis-
tent.

Proof. Figure 3.4c shows an example of an execution which is TSO consistent, but not
GWO consistent, which is explained in Sections 3.13 and 3.6.

Theorem 3.14. GWO 6⇒ TSO - some GWO consistent executions are not TSO consis-
tent.

Proof. Assuming GWO ⇒ TSO. Using TSO ⇒ PSO follows GAO ⇒ PSO. This
assumption is incorrect as it would conflict with GWO 6⇒ PSO shown in Theorem 3.8

Theorem 3.15. GAO 6⇒ TSO - some GAO consistent executions are not TSO consistent.

Proof. Assuming GAO ⇒ TSO. Using TSO ⇒ PSO follows GAO ⇒ PSO. This
assumption is incorrect as it would conflict withGAO 6⇒ PSO shown in Theorem 3.10

Theorem 3.16. TSO 6⇒ GAO - some TSO consistent executions are not GAO consistent.

Proof. Figure 3.4d shows an example of an execution which is TSO consistent, but not
GAO consistent, which is explained in Sections 3.13 and 3.7.

Theorem 3.17. TSO 6⇒ PC-G - some TSO consistent executions are not PC-G consis-
tent.

Proof. Figure 3.4c shows an example of an execution which is TSO consistent, but not
PC-G consistent, which is explained in Sections 3.13 and 3.9.

3.15.3. PRAM-M

26

3.15. Overview/Relationship

Theorem 3.18. PRAM-M ⇒ PRAM - all PRAM-M consistent executions are PRAM
consistent.

Proof. Consider a PRAM-M consistent execution, then there exists a SerialView on own

operations and others’ writes which respects <PO ∪ <(i)
lwo for each process. A SerialView

respecting <PO ∪ <(i)
lwo obiously respects <PO as well. Therefore, all PRAM-M consistent

executions must be PRAM consistent.

Theorem 3.19. PRAM 6⇒ PRAM-M - some PRAM consistent executions are not
PRAM-M consistent.

Proof. Figure 3.2b shows an example of an execution which is PRAM consistent, but not
PRAM-M consistent, which is explained in Sections 3.3 and 3.4.

Theorem 3.20. PRAM-M 6⇒ CC - some PRAM-M consistent executions are not CC
consistent.

Proof. Figure 3.2c shows an example of an execution which is PRAM-M consistent, but
not CC consistent, which is explained in Sections 3.4 and 3.5.

Theorem 3.21. CC 6⇒ PRAM-M - some CC consistent executions are not PRAM-M
consistent.

Proof. Assuming CC ⇒ PRAM-M. Using PRAM-M⇒ PRAM follows CC ⇒ PRAM .
 This assumption is incorrect as PRAM is incomparable to CC as seen in the examples
at Sections 3.5 and 3.3.

Theorem 3.22. PRAM-M 6⇒ GWO - some PRAM-M consistent executions are not GWO
consistent.

Proof. Figure 3.2c shows an example of an execution which is PRAM-M consistent, but
not GWO consistent, which is explained in Sections 3.4 and 3.6.

Theorem 3.23. GWO 6⇒ PRAM-M - some GWO consistent executions are not PRAM-M
consistent.

27

3. Consistency Models

Proof. Assuming GWO ⇒ PRAM-M. Using PRAM-M ⇒ PRAM follows GWO ⇒
PRAM . This assumption is incorrect as PRAM is incomparable to GWO as seen in
the examples at Sections 3.6 and 3.3.

Theorem 3.24. PC-G 6⇒ PRAM-M - some PC-G (and therefore GPO+GDO) consistent
executions are not PRAM-M consistent.

Proof. Example:

write(x,1) read(x,1)1

write(x,2) read(x,2)

read(y,1) write(y,1)

read(x,1)2

The example is PC-G consistent and therefore GPO+GDO consistent as well:

[x]: write(x, 1), read(x, 1)1, read(x, 1)2, write(x, 2), read(x, 2)
[y]: write(y, 1), read(y, 1)
[P1]: write(x, 1), write(y, 1), read(y, 1), read(x, 1)2, write(x, 2)
[P2]: write(x, 1), read(x, 1), write(x, 2), write(y, 1)
[P3]: write(x, 1), write(x, 2), read(x, 2), write(y, 1)

But not PRAM-M as for P1: write(x, 1) <
(i)
lwo write(x, 2) <

(i)
lwo write(y, 1) allows no

SerialView with write(x, 1) <i read(y, 1) <i read(x, 1)2

Theorem 3.25. PSO 6⇒ PRAM-M - some PSO consistent executions are not PRAM-M
consistent.

Proof. Example:

write(y,1)

write(x,1) read(x,1)1

write(y,2)

read(x,2) write(x,2)

read(y,1)2

The example is PSO consistent as it can be easily seen if write(y, 1) is buffered.

But not PRAM-M as for P1: write(y, 1) <
(i)
lwo write(y, 2) <

(i)
lwo write(x, 2) allows no

SerialView with write(y, 1) <i write(x, 1) <i read(x, 2) <i read(y, 1)2

Proposition 3.2. Causal ⇒ PRAM-M - all causal consistent executions are PRAM-M
consistent.

Proposition 3.3. TSO ⇒ PRAM-M - all TSO consistent executions are PRAM-M con-
sistent.

28

3.15. Overview/Relationship

3.15.4. PC-D

Theorem 3.26. PC-D 6⇒ PC-G - some PC-D consistent executions are not PC-G consis-
tent.

Proof. Figure 3.3e shows an example of an execution which is PC-D consistent, but not
PC-G consistent, which is explained in Sections 3.11 and 3.9.

Theorem 3.27. PC-G 6⇒ PC-D - some PC-G consistent executions are not PC-D consis-
tent.

Proof. Figure 3.3d shows an example of an execution which is PC-G consistent, but not
PC-D consistent, which is explained in Sections 3.9 and 3.11.

Proposition 3.4. PC-D⇒ GPO+GDO - all PC-D consistent executions are GPO+GDO
consistent.

Proposition 3.5. GPO + GDO 6⇒ PC-D - some GPO+GDO consistent executions are
not PC-D consistent.

Proposition 3.6. TSO 6⇒ PC-D - some TSO (and therefore PSO) consistent executions
are not PC-D consistent.

Proposition 3.7. Causal 6⇒ PC-D - some causally consistent executions are not PC-D
consistent.

29

3. Consistency Models

30

4. Reference Machines

Given the set of processes P , shared variables V , operations O and the process order ≤PO an
implementation of a memory system determines the writes-to order 7→, from which the read
values can be derived.

In this chapter, reference machines for different memory consistency models are introduced.
These machines determine for each input (P,V,O,≤PO) a writes-to order which is consistent
with its memory consistency model. Furthermore, it is shown that the machines cover every
possible writes-to order which is consistent with its memory model for a given input.

These reference machines illustrate the definition of different memory models in an operational
way.

4.1. Common Structural Elements

The reference machines are constructed by components which are introduced in the following.

4.1.1. FIFO

The FIFO component is a First-In-First-Out Buffer which buffers memory operations as
tuples. It holds the operation type (read or write), the issuing process’ id, the memory
address, and in case of a write operation the value to be written.

The FIFO component is considered to be an unbounded buffer for completeness proofs. It
can be bounded for finite operation sets. Boundedness is further discussed in Section 5.4.

An implementation is given as Quartz code in Appendix A.2.1. The implementation is
bounded because of programming language restrictions.

4.1.2. FIFOwClock

FIFOwClock is an extended FIFO buffer which endores entries by an additional clock value.
A clock value is a natural number which is considered unbounded for theoretical purposes.

An implementation is given as Quartz code in Appendix A.2.2. In the implementation the
clock value is a bounded natural number because of programming language restrictions.

4.1.3. FIFOwClocks

FIFOwClocks is an extended FIFOwClock buffer which does not only contain one clock for
each entry, but N clocks, where N is the number of processes. An implementation is given
as Quartz code in Appendix A.2.3.

31

4. Reference Machines

4.1.4. FIFOwReadForwarding

The FIFOwReadForwarding components is a FIFO buffer which is extended by a read for-
warding mechanism. This mechanism enables to check if an entry regarding a given memory
location is present in the buffer and if so to obtain that entries value. An implementation is
given as Quartz code in Appendix A.2.4.

4.1.5. MemUnit

The MemUnit component represents a memory unit which stores values to a given location
and retrieves the last written values on a read operation. An implementation is given as
Quartz code in Appendix A.2.5.

4.1.6. MemUnitSingleCell

MemUnitSingleCell behaves equivalent to MemUnit but consists only of one memory cell
which corresponds to a single memory location. An implementation is given as Quartz code
in Appendix A.2.6.

4.1.7. Store Buffer (SB)

Store buffers (SB) consist of a MemUnitSingleCell component and additional logic. It receives
memory operations and inserts writes into the MemUnitSingleCell and forwards them to
the arbiter if requested. On received read operations it checks the MemUnitSingleCell if it
contains a write to that memory location and returns the latest one if it exists and otherwise
forwards the read to the arbiter if requested.

4.1.8. Distributor (Dist)

A distributor (Dist) is responsible for distributing memory operations to the connected com-
ponents while respecting some rules. As these rules differ from memory model to memory
model, the semantics and implementations differ for each model.

4.1.9. Arbiter

The arbiter is typically the characterising component of a memory model. It determines
the order in which memory operations are passed from the connected components based on
consistency model dependent rules.

If it chooses a component which is not ready to deliver an operation (e.g. in case of an empty
FIFO) the arbiter is considered to idle and to make a new choice in the next cycle. This
behaviour could be optimized but is required to achieve the completeness property.

The arbiter’s behaviour of most models differ significantly and therefore the implementations
are model specific.

32

4.2. Local Consistency Reference Machine

4.1.10. Receiver (Rec)

A receiver (Rec) is responsible to receive read results from multiple components and to deliver
them to its process.

4.2. Local Consistency Reference Machine

4.2.1. Structure

The structure of the local consistency reference machine is shown in Figure 4.1 for a given
set P of n processes and m memory locations. For each process Pi ∈ P the memory system
has a distributor Disti, an arbiter Arbiteri, a memory unit Memi and n different FIFO
buffers FIFOi,j , j ∈ {1 . . . n} and an additional FIFO buffer FIFOloopi. A distributor Disti
broadcasts received writes to all corresponding FIFOs FIFOj,i, j ∈ {1 . . . n}, and sends all
received reads to the FIFO FIFOi,i. The arbiters choose non-deterministically from the
connected FIFOs to read from. If Arbiteri selected FIFOi,i the operation is passed to the
memory unit. If any other FIFOi,j , i 6= j or FIFOloopi is selected then the arbiter chooses
non-deterministically to either pass it to the memory unit or to insert it in FIFOloopi.

4.2.2. Correctness

Theorem 4.1. The given reference machine is correct: All executions it may produce for
a given input are Local consistent.

Proof. For each process, its arbiter generates a SerialView while maintaining <i. The
own memory commands are kept in order in the FIFO and are sent directly in order to the
memory if the corresponding FIFO is selected. The SerialView covers all own operations
and all write operations as no write is lost, writes from other processes are inserted into
their corresponding FIFO and either send to the memory unit or put in the feedback
FIFO until further processing from there.

4.2.3. Completeness

Theorem 4.2. The given reference machine is complete: For a given input, it covers every
Local consistent execution.

Proof. Consider a local consistent execution (by Definition 3.2):
∀i∈P∃SerialV iew (<i| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))
As the arbiter selects nondeterministically, it may use its process SerialView (which must
exist according to the definition) as selection criteria: If according to the SerialView,
operation õ is to be processed next, it moves operations from the corresponding FIFO
into the feedback FIFO until it fetches õ which it passed to the memory unit. Using this
selection order, the resulting writes-to order 7→ is the same as the one of the assumed

33

4. Reference Machines

Figure 4.1.: Local consistency reference machine

34

4.3. Slow Consistency Reference Machine

execution. Therefore every Local consistent execution is covered by the reference machine.

4.3. Slow Consistency Reference Machine

4.3.1. Structure

The structure of the slow consistency reference machine is shown in Figure 4.2 for a given set P
of n processes and m memory locations. For each process Pi ∈ P the memory system has a dis-
tributor Disti and n different distributors Disti,j , j ∈ {1 . . . n}, an arbiter Arbiteri, a memory
unit Memi and n×m different FIFO buffers FIFOi,j,k, j ∈ {1 . . . n}, k ∈ {1 . . .m}. A distrib-
utor Disti broadcasts received writes to all corresponding distributors Distj,i, j ∈ {1 . . . n},
and sends all received reads to the distributor Disti,i. A sub-distributor Disti,j broadcasts
received memory commands for memory cell k to the corresponding FIFO FIFOi,j,k. The
arbiters choose non-deterministically one of the connected FIFOs to read from.

Figure 4.2.: Slow consistency reference machine

4.3.2. Correctness

Theorem 4.3. The given reference machine is correct: All executions it may produce for
a given input are slowly consistent.

Proof. The distributor fills the FIFOs in the order of the incoming memory opera-
tions. Usage of FIFO buffers ensures by construction that the read and write op-
erations of each process are kept in order for each memory location (maintains ≤PO

35

4. Reference Machines

|(∗, i, x, ∗) ∪ (w, ∗, x, ∗)). The arbiter takes elements from the top of a FIFO buffer
and issues the operation to the memory unit. Therefore, the memory unit has a se-
rial view on all processes’ write operations and the read operations of its corresponding
process, and because this property holds for each memory unit, the execution, consisting
of (P,V,O,≤PO,7→), is slowly consistent according to Definition 3.3.

4.3.3. Completeness

Theorem 4.4. The given reference machine is complete: For a given input, it covers every
slowly consistent execution.

Proof. Consider a slowly consistent execution (by Definition 3.3):
∀i∈P,x∈V ∃SerialV iew(≤PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))
If each arbiter uses the SerialViews (one for each memory location) of its process (which
exist according to the definition) as selection order (which is a valid selection order because
the arbiter chooses non-deterministically), then the resulting writes-to order 7→ is the
same as the one of the assumed execution. Therefore every slowly consistent execution
is covered by the reference machine.

4.4. PRAM Consistency Reference Machine

MPRAM shows a possible implementation of PRAM consistency (Section 3.3). The model suits
for distributed systems as seen in MPRAM because each process has its own local memory.
Another advantage for use in distributed system is the lack of transmission delay dependencies:
no process has to wait for the arrival of another process’ write to proceed.

4.4.1. Structure

The structure of the PRAM consistency reference machine is shown in Figure 4.3 for a given
set P of n processes. For each process Pi ∈ P the memory system has a distributor Disti, an
arbiter Arbiteri, a memory unit Memi and n different FIFO buffers FIFOi,j , j ∈ {1 . . . n}. A
distributor Disti broadcasts received writes to all corresponding FIFOs FIFOj,i, j ∈ {1 . . . n},
and sends all received reads to the FIFO FIFOi,i. The arbiters choose non-deterministically
from the connected FIFOs to read from.

36

4.4. PRAM Consistency Reference Machine

Figure 4.3.: MPRAM - PRAM consistency reference machine

4.4.2. Correctness

Theorem 4.5. The given reference machine is correct: All executions it may produce for
a given input are PRAM consistent.

Proof. Using FIFO buffers ensures by construction that the read and write operations of
each process are kept in order (maintains ≤PO). The arbiter takes elements from the top
of a FIFO buffer and issues the operation to the memory unit. Therefore, the memory
unit has a serial view on write operations of all processes and the read operations of its

37

4. Reference Machines

corresponding process. Due to this property holds for each memory unit, the execution,
consisting of (P,V,O,≤PO,7→), is PRAM consistent according to the Definition 3.5.

4.4.3. Completeness

Theorem 4.6. The given reference machine is complete: For a given input, it covers every
PRAM consistent execution.

Proof. Consider a PRAM consistent execution (by Definition 3.5):
∀i∈P∃SerialV iew(≤PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))
If each arbiter uses the SerialView of its process (which exists according to the defi-
nition) as selection order (which is a valid selection order because the arbiter chooses
non-deterministically), then the resulting writes-to order 7→ is the same as the one of
the assumed execution. Therefore every PRAM consistent execution is covered by the
reference machine.

4.5. Cache Consistency Reference Machine

MCache implements Cache consistency (Section 3.5) in a comprehensible way as for each
variable an arbiter generates the variable order.

4.5.1. Structure

The structure of the cache consistency reference machine is shown in Figure 4.4 for a given
set P of n processes. For each process Pi ∈ P the memory system has a distributor Disti, a
receiver Reci and m different FIFO buffers FIFOi,j , j ∈ {1 . . .m}. For each memory cell Mj

the memory system provides a memory unit Memj and an arbiter Arbiterj . The memory
units represent one memory cell, writes are immediately written to it when they are received
and the result of a read is sent to the corresponding processes receiver Reci. A distribu-
tor Disti passes the received memory command for memory cell Mj to the corresponding
FIFOj,i. The receiver Reci receives reads for its process and sends them to the processes
data interface. The arbiters choose non-deterministically from the connected FIFOs to read
from.

4.5.2. Correctness

Theorem 4.7. The given reference machine is correct: For a given input, all executions
it may produce are cache consistent.

Proof. Usage of FIFO buffers ensures by construction that the read and write operations
regarding a specific memory location of each process are kept in order (maintains ≤PO

per variable). The arbiter Arbiterj takes elements from the top of the FIFO buffers which
hold the operations for the memory location j and issues the operation to the memory

38

4.5. Cache Consistency Reference Machine

Figure 4.4.: MCache - Cache consistency reference machine

39

4. Reference Machines

unit of that memory location. Therefore that memory unit has a serial view on all read
and write operations regarding its memory location, and because this property holds
for each memory unit and location, the execution consisting of (P,V,O,≤PO,7→) is cache
consistent according to the Definition 3.8.

4.5.3. Completeness

Theorem 4.8. The given reference machine is complete: For a given input, it covers every
cache consistent execution.

Proof. Consider a cache consistent execution (by Definition 3.8):
∀x∈V ∃SerialV iew(≤PO |(∗, ∗, x, ∗))
If each arbiter uses the SerialView of its memory location (which exists according to the
definition) as selection order (which is a valid selection order because the arbiter chooses
non-deterministically), then the resulting writes-to order 7→ is the same as the one of
the assumed execution. Therefore, every cache consistent execution is covered by the
reference machine.

4.6. Causal Consistency Reference Machine

Machine MCausal is a reference machine for causal consistency (Section 3.8). Causal consis-
tency requires the machine to keep track of causal dependencies created by writes following
reads. This tracking is achieved by introducing clocks which represents the progress a process
already observed from other processes.

4.6.1. Structure

The structure of the causal consistency reference machine is shown in Figure 4.5 for a given
set P of n processes. It is based on the ’Simple Algorithm’ described by Ahamad et. al
[ABHN91]. For each process Pi ∈ P , the memory system has an arbiter Arbiti, a memory
unit Memi and n − 1 FIFOs FIFOi,j , j ∈ {1 . . .m}, i 6= j. The arbiters hold a clock vector
ti ∈ Nn which is used to determine the execution order of received writes and is appended
to the writes sent to other processes. Before ‘sending’ writes to the other processes, the
arbiter increases the clock vector’s value of the entry corresponding to its process ti[i]. Upon
‘retrieving’ a write from an other process, the arbiter updates the clock vector’s value of the
entry corresponding to the sending process ti[j]. A write is only retrieved from FIFOi,j

if its clock is lower or equal than the arbiters clock with the writes clock entry replaced:
tw[k] ≤ ti[k], k 6= j

4.6.2. Correctness

Theorem 4.9. The given reference machine is correct: For a given input, all executions
it may produce are causally consistent.

40

4.6. Causal Consistency Reference Machine

Figure 4.5.: MCausal - Causal consistency reference machine

41

4. Reference Machines

Proof. The order in which the operations are passed to a process memory unit provides
a SerialView on all writes and the process’ own reads.

Assume that an execution produces by the machine is not causal correct. Then, the
given SerialView must violate either <PO or <WO. As the arbiter forwards a process’
own operations inorder to its memory location, the SerialView clearly respects <i. As the
others processes’ writes are inserted inorder into FIFOs and passed to the memory unit
inorder from the FIFOs the SerialView respects <PO as well. If the SerialView violates
<WO, then there exists a write w1 which writes to a read r process ordered before another
write w2 with the SerialView ordering w2 before w1. If process Pi’s w1 was read by the
process Pj before it issues w2 then Pj increased its clock value tj [i] and w2 was sent with
a clock vector which contained the new value. Another process Pk only can read w2 if its
clock vector value is greater or equal to the value w2 was tagged with: tk[i] ≥ tj [i]. But
as only writes received from Pi can increase tk[i] and writes are tagged with increasing
clock values regarding process order and as shown before writes appear in process order
in the SerialView, <WO could not have been violated. Therefore the assumption must
be incorrect and all possible executions the machine can generate are causal correct.

4.6.3. Completeness

Theorem 4.10. The given reference machine is complete: For a given input, it covers
every causally consistent execution.

Proof. Assumption: There exists a causally consistent execution (P,V,O,≤PO,7→) which
cannot be covered by the machine.
As the execution is causally consistent, we know that (by Definition 3.16):
∀i∈P∃SerialV iew (<i ∪ <PO ∪ <WO|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))
If each arbiter uses the SerialView of its memory location (which exists according to the
definition) as selection order, then the resulting writes-to order 7→ is the same as the
one of the assumed execution. It remains to show that the selection order is a valid one.
Since the arbiter may choose non-deterministically, the only restriction is its clock vector.
If it is not a valid selection order for process i then the operation to select next would
need to be a write from another process as all own operations may be selected without
checking the clock vector. Without loss of generality, we may say that this operation is a
write from process j called w1. The write w1 would need to have a non native clock value
which is greater than process i’s corresponding clock vector value: tw1 [k] > ti[k], k 6= j.
As clock vector values are only increased if a write is performed, that would imply that
process j observed a write w2 from process k before issuing w1 and that process i did
not observe w2 before w1. But that would contradict <WO and therefore the assumption
must be incorrect.
Therefore every causally consistent execution is covered by the reference machine.

42

4.7. Processor (PC-G) Consistency Reference Machine

4.6.4. Alternative

To improve performance, the presented machine could be modified to write new clock values
upon retrieved writes to a temporary clock vector instead of updating clock values directly
and to update a clock value with its temporary counterpart whenever the process reads from
that location. An equivalent behaviour is already covered by the given machine via non-
determinism. However, the modification would allow a process to retrieve some writes, which
would have not been allowed in the previously presented machine.

4.7. Processor (PC-G) Consistency Reference Machine

4.7.1. Structure

The structure of the processor consistency (PC-G) reference machine is shown in Figure 4.6
for a given set P of n processes. For each process Pi ∈ P , the memory system has M
FIFOs FIFOi,x, one for each memory cell x, an arbiter Arbiteri and a memory unit Memi.
The system has an additional arbiter which non-deterministically takes memory commands
from the processes and inserts them into the corresponding FIFOs. Reads from process i
to memory cell x are inserted into the process’ FIFOi,x only, writes to memory cell x are
inserted into all FIFOi,x, i ∈ P . The main arbiter keeps a clock vector ti ∈ Nn, i ∈ P
and tags each write from process i with a tuple (i, ti) and increases ti after distributing the
write. The processes’ arbiters Arbiteri keep each a clock vector ti,j ∈ Nn, i, j ∈ P , too.
They select non-deterministically one of the FIFOs to read from but only pop an element
from the selected FIFO if its tag’s clock is the next element to be processed for that process:
clock

(
(k, t)

)
= ti,k + 1

4.7.2. Correctness

Theorem 4.11. The given reference machine is correct: All executions it may produce for
a given input are PC-G consistent.

Proof. The order in which the main arbiter passes commands to its corresponding FIFOs
cells corresponds to a total order <x on all memory commands regarding this memory
address. All of a process’ write operations are tagged with a steadily increasing counter.
As this counter reflects their order in <PO and the operations are only passed to the
memory units in that particular order, the <PO is maintained. Therefore the processes
arbiter construct each a serial view on all read operations of their corresponding process
and all processes’ write operations which respects<PO and

⋃
x∈V <x and as a consequence

the executions of the reference machine are Processor consistent.

4.7.3. Completeness

43

4. Reference Machines

Figure 4.6.: MPC - Processor consistency reference machine

44

4.8. PSO Consistency Reference Machine

Theorem 4.12. The given reference machine is complete: For a given input, it covers
every PC-G consistent execution.

Proof. Consider a PC-G consistent execution (by Definition 3.17):
∀x∈V ∃ <x= SerialV iew (<PO|(∗, ∗, x, ∗))
∧∀i∈P∃SerialV iew ((∪x∈V <x)

⋃
<PO|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)).

If the main arbiter uses the orders <x as selection criteria (it only selects an operation
if its predecessor in <x has already been passed to the FIFOs before) then the FIFOs
maintain <x. As the processes’ arbiters use an operations’ tag as selection criteria they
maintain <PO by the way the tags are generated. Therefore the execution is covered by
the machine. The assumption must be incorrect.
Therefore every PC-G consistent execution is covered by the reference machine.

4.8. PSO Consistency Reference Machine

4.8.1. Structure

MPSO shown in Figure 4.7 illustrates the reference machine for PSO consistency. The ref-
erence machine consists of M store buffers SBi,j (see Section 4.1.7), one for each memory
location, and one distributor for each connected process, an arbiter, and a memory unit.
The distributors pass the memory operations to the corresponding store buffer. The arbiter
selects non-deterministically between the store buffers and writes the next buffered value
back to the main memory unit. If the store buffer wants to issue a read, the read may
non-deterministically be processed before the next store buffer entry.

4.8.2. Correctness

Proposition 4.1. The given reference machine is correct: For a given input, all executions
it may produce are PSO consistent.

4.8.3. Completeness

Proposition 4.2. The given reference machine is complete: For a given input, it covers
every PSO consistent execution.

4.9. TSO Consistency Reference Machine

4.9.1. Structure

MTSO shown in Figure 4.8 illustrates the reference machine for TSO consistency. The ref-
erence machine consists of a store buffer SBi (see Section 4.1.7) for each connected process,

45

4. Reference Machines

Figure 4.7.: MPSO - PSO consistency reference machine

an arbiter and a memory unit. The store buffers receive operations from the processes and
return read results back to them. The arbiter selects non-deterministically between the store
buffers and writes the next buffered value back to the main memory unit. If the store buffer
wants to issue a read, the read may (chosen non-deterministically) be processed before the
next store buffer entry.

4.9.2. Correctness

Proposition 4.3. The given reference machine is correct: For a given input, all executions
it may produce are TSO consistent.

4.9.3. Completeness

Proposition 4.4. The given reference machine is complete: For a given input, it covers
every TSO consistent execution.

4.10. Sequential Consistency Reference Machine

Both MSCb and MSCnb are implementations of sequential consistency. Sequential consis-
tency has been long time the assumed memory model for programmers as it represents an
uniprocessors memory behaviour.

There exist more performant implementations not discussed here, e.g. using caches and the
MESI protocol.

46

4.10. Sequential Consistency Reference Machine

Figure 4.8.: MTSO - TSO consistency reference machine

4.10.1. Structure

Figure 4.9 depicts two possible implementations for a sequential consistent reference machine.
As some of the previously presented reference machines offer non-blocking write access, the
machine MSCnb in Figure 4.9a offers them, too. The machine MSCb with blocking reads in
Figure 4.9b however is simpler in its design and lacks problems introduced with unbounded
buffers.

MSCnb has an unbounded FIFO buffer for each connected process which holds read and
write operations. Both machines have an arbiter which selects non-deterministically from its
connected components and passes the memory command to the memory unit. If the selected
component has no memory command ready to pass then the arbiter stops and starts its
selection again in the next cycle. The memory unit passes processed reads to the process it
was issued from.

4.10.2. Correctness

Theorem 4.13. The given reference machines are correct: For a given input, all executions
they may produce are sequentially consistent.

Proof. In MSCb, all memory commands are blocking and are served one after another,
in MSCnb they are inserted into a FIFO. Therefore, in both machines the arbiter serves
the memory commands without violating <PO. The arbiter generates a serialization of
all issued memory commands which are issued to the memory unit. Clearly this satisfies

47

4. Reference Machines

(a) MSCnb non-blocking writes (b) MSCb blocking writes

Figure 4.9.: Sequential Consistency Reference Machines

Definition 3.29.

4.10.3. Completeness

Theorem 4.14. The given reference machines are complete: For a given input, they cover
every sequentially consistent execution.

Proof. If an arbitrary execution is sequentially consistent, then following from Definition
3.29 a serial view exists which respects <PO. If the arbiter uses this view as oracle for its
non-deterministically choices, then the resulting behaviour is equivalent to the considered
execution. Therefore, all sequentially consistent executions are covered by the reference
machines.

48

5. Implementations

5.1. Environment

For the implementation, the synchronous programming language Quartz [Schn09] from the
reactive system framework Averest [Embe] is used. Quartz is very similar to Esterel [Berr00],
but provides language constructs for asynchronous parallel execution, explicitly defined non-
deterministic choices and delayed data manipulation. The Averest framework offers interfaces
for simulation, verification (SMV [McMi92]) and synthesis (Verilog [IEEE96, Moor92], Sys-
temC [IEEE05]).

5.2. Interface

The processor interface provided by the built memory systems is the same used by the Abacus
processor family built by the Embedded Systems Group of TU Kaiserslautern [Embe]. The
Abacus processor series is built using Quartz for educational and research interests and up to
now covers a single-cycle, a pipelined and an out-of-order. It uses the instruction set Abacus
which is similar to the MIPS architecture. The memory interface consists of an input bus for
the address, input buses for the read, write and request memory flags, output buses for the
request acknowledgement and memory done flags and an inout bus for data.

5.3. Non-Determinism

Non-determinism is needed to achieve completeness in the given reference machines. If for
example two processes issue each a write operation on a sequential reference machine, then
there exist two possible executions (each of both operations could be executed before the other
one) which are both sequential consistent. Because we want a complete reference machine it
must be able to produce all possible executions, and therefore it must use non-determinism.

5.4. (Un)Bounded Buffer

As the FIFOs in the reference machines are considered unbounded the question arises whether
that assumption is necessary.

For a finite number of issued memory commands, the FIFOs can be bounded. For example
the FIFOs of the PRAM reference machine can be bounded by the length of the longest
process: maxi∈P |{o ∈ O|process(o) = i}|.
But as real applications have to be considered non-terminating, the FIFOs must be considered

49

5. Implementations

unbounded, iff the reference model should satisfy completeness. If, for example, two processes
both issue an unbounded number of memory operations to a PRAM reference machine with
FIFOs which have a maximum size of N entries, the reference system can’t cover all possible
executions any more: If process1 emits (N + 1) operations: w1

, . . . , w
1
N and process2 emits

(N + 1) operations: w2
0 . . . w

2
N then there exists a PRAM consistent execution for which

process1 has the serial view: w2
1 < . . . < w2

N < w1
1 < . . . < w1

n and process2 has the serial
view w1

1 < . . . < w1
N < w2

1 < . . . < w2
n. To generate this view, the first FIFO belonging to

process1 would have to hold all (N +1) commands of process1, or the second FIFO belonging
to process2 would have to hold (N + 1) commands, but because the FIFOs are bounded by
N this execution cannot be produced by the bounded reference machine.

Another interesting question is, what would happen if a given reference machine’s buffer
would be bounded. The machine would most likely not satisfy completeness any more. But
as long as data loss (by trying to insert entries into an already full buffer) is prevented by
signalising the buffer status to the process, the constraints defined by the consistency models
stay intact, therefore the execution produced remains consistent.

Real implementations make use of finite buffers. Thus, if the reference machines are used as
specifications, one can also use bounded buffers of sufficiently large size.

5.5. Improvements

If a process notifies the arbiter when it stops submitting memory commands then the ar-
biters can exclude the process’ corresponding FIFOs from the selection process to increase
throughput without violating completeness. An arbiter could exclude empty FIFOs from the
selection process to increase throughput, however that would destroy the completeness prop-
erty. Similarly it could use statistically selection criteria, fairness and liveness properties for
the selection process.

50

6. Conclusions and Further Work

This thesis provides a summary and formal presentation of memory consitency models. It
is the basis for future work on this topic and serves as a reference document for educational
purposes. The most common memory consistency models were presented in a comparable
way and their definitions were explained by examples. Where previous publications only
considered a subset of the analysed consistency models, this thesis includes some additional
ones, namely PSO, TSO, PRAM-M, PC-DASH, and describes their relationship to each other.

Operational semantics for the most relevant memory consistency models were presented by
providing implementations in the language Quartz. The structures and semantics of the
implementations were shown to be equivalent to the formal consistency model definition in
terms of correctness and completeness.

The reference machines were tested with a set of test cases which resulted in expected be-
haviour.

As the implementations focused on equivalence with the formal definitions, there may exist
smaller or more efficient implementations that are still correct but lack the completeness
property. It is worth some effort to implement optimised versions of the memory models
in the future. Methods should be considered to show that the behaviour of those optimised
versions are covered by the reference machines. Such methods could then be extended to prove
correctness of real world implementations of memory systems towards given model reference
machines.

This thesis focused on ‘pure’ memory consistency models. In contrast to the described pure
consistency models, hybrid models have different classes of operations: special and normal
operations. Hybrid models enforce a more restrictive consistency model for special operations
than the underlying weak memory model for the normal operations. This way, the program-
mer can take performance advantages of the weaker consistency model and use the special
instructions to enforce the more restrictive model when required to synchronise. View-based
formal definitions and reference machines for such hybrid systems may be developed in future
work.

51

6. Conclusions and Further Work

52

A. Quartz Implementations

A.1. Remarks

The mechanism for explicit non-determinism in Quartz (‘choose’) was replaced by oracle
variables which are added to the modules interface. This has been done for verification
purposes and to enable the reproducibility of simulation results.

A.2. Shared modules

A.2.1. FIFO

This is a FIFO buffer with elements (writeF lag, originProcess,memoryTarget, value). The
tuple field writeF lag determiness if the entry is a write or read operation, Tuple field
originProcess contains the ID of the process which issued the operation, FieldmemoryTarget
is the memory address the operation operates on and the field value contains the value to be
written to memory in case of a write operation.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro ProcessCount = 3 ;
macro DataWidth = 8 ;
macro MemSize = 8 ;

macro Bu f f e rS i z e = 6 ;

module FIFO(
event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & ta r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ? inp ,
// output : writeCommand & ta r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ! outp
) {

[Bu f f e rS i z e] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) f i f o ;
nat{Bu f f e rS i z e } head ;
nat{Bu f f e rS i z e } nxxt ;
bool empty ;

empty = true ;

always {
if (empty) {

emit (isempty) ;
}
if ((head==nxxt) & ! empty) {

emit (i s f u l l) ;

53

A. Quartz Implementations

}

if (! empty) {
outp = f i f o [head] ;

}

if (pop & ! empty) {
if (head==Buf f e rS i z e −1) { next (head) = 0 ; } else { next (head) = head+1; }

if (((head==Buf f e rS i z e −1 & nxxt==0) | (head+1==nxxt))) {
if (! (push & ! i s f u l l)) {

next (empty) = true ;
}

}
}

if (push & ! i s f u l l) {
next (empty) = false ;
next (f i f o [nxxt]) = inp ;

if (nxxt !=Buf f e rS i z e −1) {
next (nxxt) = nxxt+1;

} else {
next (nxxt) = 0 ;

}
}

}
}

drivenby FiFoBufferTest {
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
inp = (true , 1 , 1 , 0b00100110) ; emit (push) ; pause ;
inp = (false , 1 , 2 , 0b00100110) ; emit (push) ; pause ;
inp = (false , 1 , 1 , 0b00100110) ; emit (push) ; emit (pop) ; pause ;
inp = (true , 1 , 3 , 0b00100110) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00100110) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00100110) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00100110) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00100110) ; emit (push) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;

}

A.2.2. FIFOwClock

This is a FIFO buffer with elements (writeF lag, originProcess,memoryTarget, value, clock).
The interface of FIFO was extended by adding field clock which holds a clock value (natural
number). The other fields behave like the counterpart in module FIFO.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro ProcessCount = 3 ;
macro DataWidth = 8 ;
macro MemSize = 8 ;

54

A.2. Shared modules

macro MaxClock = 127 ;

macro Bu f f e rS i z e = 6 ;

module FIFOwClock (
event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & ta r g e t & va lue & c l ock
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ nat{MaxClock}) →

? inp ,
// output : writeCommand & ta r g e t & va lue & c l ock
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ nat{MaxClock}) →

! outp
) {

[Bu f f e rS i z e] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ →
nat{MaxClock}) f i f o ;

nat{Bu f f e rS i z e } head ;
nat{Bu f f e rS i z e } nxxt ;
bool empty ;

empty = true ;

always {
if (empty) {

emit (isempty) ;
}
if ((head==nxxt) & ! empty) {

emit (i s f u l l) ;
}

if (! empty) {
outp = f i f o [head] ;

}

if (pop & ! empty) {
if (head==Buf f e rS i z e −1) { next (head) = 0 ; } else { next (head) = head+1; }

if (((head==Buf f e rS i z e −1 & nxxt==0) | (head+1==nxxt))) {
if (! (push & ! i s f u l l)) {

next (empty) = true ;
}

}
}

if (push & ! i s f u l l) {
next (empty) = false ;
next (f i f o [nxxt]) = inp ;

if (nxxt !=Buf f e rS i z e −1) {
next (nxxt) = nxxt+1;

} else {
next (nxxt) = 0 ;

}
}

}
}

55

A. Quartz Implementations

A.2.3. FIFOwClocks

This is a FIFO buffer with elements (writeF lag, originProcess,memoryTarget, value, clocks).
The interface of FIFO was extended by adding field clocks which holds a tuple of clock val-
ues (natural numbers), one for each process. The other fields behave like the counterpart in
module FIFO.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro ProcessCount = 3 ;
macro DataWidth = 8 ;
macro MemSize = 8 ;

macro MaxClock = 127 ;

macro Bu f f e rS i z e = 6 ;

module FIFOwClocks (
event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & or i g i n & t a r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ →

[ProcessCount] nat{MaxClock}) ? inp ,
// output : writeCommand & or i g i n & t a r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ →

[ProcessCount] nat{MaxClock}) ! outp
) {

[Bu f f e rS i z e] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth} ∗ →
[ProcessCount] nat{MaxClock}) f i f o ;

nat{Bu f f e rS i z e } head ;
nat{Bu f f e rS i z e } nxxt ;
bool empty ;

empty = true ;

always {
if (empty) {

emit (isempty) ;
}
if ((head==nxxt) & ! empty) {

emit (i s f u l l) ;
}

if (! empty) {
outp = f i f o [head] ;

}

if (pop & ! empty) {
if (head==Buf f e rS i z e −1) { next (head) = 0 ; } else { next (head) = head+1; }

if (((head==Buf f e rS i z e −1 & nxxt==0) | (head+1==nxxt))) {
if (! (push & ! i s f u l l)) {

next (empty) = true ;
}

}
}

if (push & ! i s f u l l) {
next (empty) = false ;
next (f i f o [nxxt]) = inp ;

if (nxxt !=Buf f e rS i z e −1) {

56

A.2. Shared modules

next (nxxt) = nxxt+1;
} else {

next (nxxt) = 0 ;
}

}
}

}

A.2.4. FIFOwReadForwarding

This is a FIFO buffer with elements (writeF lag, originProcess,memoryTarget, value).
The fields behave like the counterpart in module FIFO.

This buffer additionally offers an interface and mechanisms to retrieve the most recent write’s
value if available for a given memory address.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro ProcessCount = 3 ;
macro DataWidth = 8 ;
macro MemSize = 8 ;

macro Bu f f e rS i z e = 6 ;

module FIFOwReadForwarding (
event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & ta r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ? inp ,
// output : writeCommand & ta r g e t & va lue
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ! outp ,

// Read Forward Mechanisms
// readIn : v a l i d & address
event (bool ∗ nat{MemSize}) ? readIn ,
// readOut : succes s & va lue
event (bool ∗ bv{DataWidth}) ! readOut
) {

// FIFO va r i a b l e s
[Bu f f e rS i z e] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) f i f o ;
nat{Bu f f e rS i z e } head ;
nat{Bu f f e rS i z e } nxxt ;
bool empty ;

// Read Forward Mechanism va r i a b l e s
nat{Bu f f e rS i z e } t a i l ;
event [Bu f f e rS i z e] nat{Bu f f e rS i z e } readpos ;
event nat{Bu f f e rS i z e } headreadpos ;
event [Bu f f e rS i z e] bool readdone ;

// I n i t i a l z e FIFO empty
empty = true ;

always {
if (empty) {

emit (isempty) ;
}
if ((head==nxxt) & ! empty) {

emit (i s f u l l) ;
}

57

A. Quartz Implementations

if (! empty) {
outp = f i f o [head] ;

}

if (pop & ! empty) {
if (head==Buf f e rS i z e −1) { next (head) = 0 ; } else { next (head) = head+1; }

if (((head==Buf f e rS i z e −1 & nxxt==0) | (head+1==nxxt))) {
if (! (push & ! i s f u l l)) {

next (empty) = true ;
}

}
}

if (push & ! i s f u l l) {
next (empty) = false ;
next (f i f o [nxxt]) = inp ;

if (nxxt !=Buf f e rS i z e −1) {
next (nxxt) = nxxt+1;

} else {
next (nxxt) = 0 ;

}
}

// Read Forward Mechanism //

// t a i l = (nxxt==0?Buf ferS i ze −1:nxxt−1) ;
if (nxxt<=0) {

t a i l = Buf f e rS i z e −1;
} else {

t a i l = nxxt−1;
}

for (i = 0 . . Bu f f e rS i z e −1) do | | {
// readpos [i] = (t a i l>=i ? t a i l −i : t a i l+Buf ferS i ze−i) ;
if (t a i l>=i) {

readpos [i] = t a i l−i ;
} else {

readpos [i] = t a i l+Buf f e rS i z e−i ;
}

}
if (readIn . 0 & ! empty) { // I f read reque s t and FIFO not empty

for (i = 0 . . Bu f f e rS i z e −1) do | | {
let (pos = readpos [i])
{

if (i == head) { headreadpos = pos ; }

if (pos <= headreadpos) { // exc lude i n v a l i d e n t r i e s
if (pos == 0) { // s t a r t from nxt−1 % s i z e

if (readIn . 1 == f i f o [i] . 2) {
emit (readdone [0]) ;
readOut = (true , f i f o [i] . 3) ;

}
} else {

if ((! readdone [pos−1]) & readIn . 1 == f i f o [i] . 2) {
emit (readdone [pos]) ;
readOut = (true , f i f o [i] . 3) ;

} else {
readdone [pos] = readdone [pos −1] ;

}
}

}
}

}

58

A.2. Shared modules

}
}

}

drivenby StBfBuf ferTest {
emit (pop) ; pause ;
emit (pop) ; pause ;
readIn = (true , 1) ;
emit (pop) ; pause ;
inp = (true , 1 , 1 , 0b00000001) ; emit (push) ; pause ;
inp = (false , 1 , 2 , 0b00000010) ; emit (push) ; pause ;
readIn = (true , 2) ; pause ;
readIn = (true , 3) ; pause ;
inp = (false , 1 , 1 , 0b00000011) ; emit (push) ; emit (pop) ; pause ;
inp = (true , 1 , 3 , 0b00000100) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00000101) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00000110) ; emit (push) ; pause ;
inp = (true , 1 , 3 , 0b00000111) ; emit (push) ; pause ;
readIn = (true , 1) ; pause ;
readIn = (true , 3) ; pause ;
inp = (true , 1 , 3 , 0b00001000) ; emit (push) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
readIn = (true , 3) ; pause ;
emit (pop) ; pause ;
readIn = (true , 3) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;
emit (pop) ; pause ;

}

A.2.5. MemUnit

This is a memory unit which processes memory operations and returns read results. The
values are stored in a bit-vector array.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module MemUnit(
// input : i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth})) →

? arbiterOut ,

// output (doneRead & or i g i n & va lue)
event (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) ! readResu l t

) {

[MemSize] bv{DataWidth} Mem;

always {
immediate await (arb i te rOut . 0) ;

if ((arb i te rOut . 1) . 0) { // wr i t e
Mem[(arb i te rOut . 1) . 2] = (arb i te rOut . 1) . 3 ;

} else {
readResu l t = (true , (arb i terOut . 1) . 1 , Mem[(arb i te rOut . 1) . 2]) ;

59

A. Quartz Implementations

}
}

}

A.2.6. MemUnitSingleCell

A single cell memory unit which processes memory operations and returns read results of a
single memory location. The value is stored in a bit-vector.

package Arch i t e c tu r e . ConsistencyModels . S t ruc ture ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module MemUnitSingleCell (
// input : i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth})) →

? arbiterOut ,

// output (doneRead & or i g i n & va lue)
event (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) ! readResu l t

) {

bv{DataWidth} Mem;

always {
immediate await (arb i te rOut . 0) ;

if ((arb i te rOut . 1) . 0) { // wr i t e
Mem = (arb i terOut . 1) . 3 ;

} else {
readResu l t = (true , (arb i te rOut . 1) . 1 , Mem) ;

}
}

}

A.3. RefLocal : Local Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefLocal ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFO ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefLocal (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,

60

A.3. RefLocal : Local Consistency Reference Machine

event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event [ProcessCount] nat{ProcessCount+1} ? orac l e ,
event [ProcessCount] nat{2} ? o r a c l e 2

) {
// FIFO

event [ProcessCount] [ProcessCount] bool FIFOpop ;
event [ProcessCount] [ProcessCount] bool FIFOpush ;
event [ProcessCount] [ProcessCount] bool FIFOisempty ;
event [ProcessCount] [ProcessCount] bool FIFOi s fu l l ;
// input : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOinp ;
// output : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOoutp ;

event [ProcessCount] bool someFIFOfull ;

// FIFOloop
event [ProcessCount] bool FIFOloopPop ;
event [ProcessCount] bool FIFOloopPush ;
event [ProcessCount] bool FIFOloopIsempty ;
event [ProcessCount] bool FIFOloopI s fu l l ;
// input : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOloopInp ;
// output : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOloopOutp ;

// Arb i t e r
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) arbiterTemp ;

// Mem
// memIn : v a l i d / i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) memIn ;
// readResu l t : v a l i d & or i g i n & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always { // D i s t r i b u t o r (broadcas t s wr i t e to a l l connected FIFOs and sends →

reads to own FIFO)
if (reqMem [i] & ! someFIFOfull [i]) {

emit (ackMem [i]) ;
if (writeMem [i]) {

emit (doneMem [i]) ;
}

for (j = 0 . . ProcessCount−1) {
if ((j==i) | writeMem [i]) {

// REMARK: no t i f y mixed ind i c e s .
FIFOpush [j] [i] = true ;
FIFOinp [j] [i] = (writeMem [i] , i , adrBus [i] , dataBus [i]) ;

}
}

}

}

61

A. Quartz Implementations

| |
for (j = 0 . . ProcessCount−1) do | | {

always {
if (F IFOi s fu l l [j] [i]) {

emit (someFIFOfull [i]) ;
}

}
| |
f i f o : FIFO(FIFOpop [i] [j] , FIFOpush [i] [j] , FIFOisempty [i] [j] , →

FIFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [i] [j]) ;
}
| |
f i f o l o o p : FIFO(FIFOloopPop [i] , FIFOloopPush [i] , FIFOloopIsempty [i] , →

FIFOloopI s fu l l [i] , FIFOloopInp [i] , FIFOloopOutp [i]) ;
| |
always { // Arb i t e r (” Shu f f l e ” others , pass own)

let (o1 = o r a c l e [i])
let (o2 = ora c l e 2 [i])
{

// choose (o1 = 0 . . ProcessCount) {
if (o1 < ProcessCount) { // read from FIFOs

if (! FIFOisempty [i] [o1]) {
arbiterTemp [i] = (true , FIFOoutp [i] [o1]) ;
emit (FIFOpop [i] [o1]) ;

}
} else { // read from feedback

if (! FIFOloopIsempty [i]) {
arbiterTemp [i] = (true , FIFOloopOutp [i]) ;
emit (FIFOloopPop [i]) ;

}
}

//}
if (arbiterTemp [i] . 0) {

// choose (o2 = 0 . . 1) {
if (o1 == i | o2 == 0) { // pass to Mem

memIn [i] = arbiterTemp [i] ;
} else { // feedback

if (! F IFOloopI s fu l l [i]) {
FIFOloopInp [i] = arbiterTemp [i] . 1 ;
emit (FIFOloopPush [i]) ;

}
}

//}
}

}
}
| |
memunit : MemUnit(memIn [i] , r eadResu l t [i]) ;
| |
always {

if (readResu l t [i] . 0) {
emit (doneMem [i]) ;
dataBus [i] = readResu l t [i] . 2 ;

}
}

}
}

A.4. RefSlow : Slow Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefSlow ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFO ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

62

A.4. RefSlow : Slow Consistency Reference Machine

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefSlow (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event [ProcessCount] nat{ProcessCount} ? orac l e ,
event [ProcessCount] nat{MemSize} ? o r a c l e 2

) {
// FIFO

event [ProcessCount] [ProcessCount] [MemSize] bool FIFOpop ;
event [ProcessCount] [ProcessCount] [MemSize] bool FIFOpush ;
event [ProcessCount] [ProcessCount] [MemSize] bool FIFOisempty ;
event [ProcessCount] [ProcessCount] [MemSize] bool FIFOi s fu l l ;
// input : writeCommand & or i g i n t a r g e t & va lue
event [ProcessCount] [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ →

nat{MemSize} ∗ bv{DataWidth}) FIFOinp ;
// output : writeCommand & or i g i n t a r g e t & va lue
event [ProcessCount] [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ →

nat{MemSize} ∗ bv{DataWidth}) FIFOoutp ;

event [ProcessCount] bool someFIFOfull ;

// Memory Units
// memIn : v a l i d / i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) memIn ;
// readResu l t : v a l i d & or i g i n & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always {

// D i s t r i b u t o r : b roadcas t s wr i t e s to a l l connected FIFOs
// and sends reads to own FIFO

// SubDis t r i bu tor (s p l i t s memory c e l l s)
if (reqMem [i] & ! someFIFOfull [i]) {

emit (ackMem [i]) ;
if (writeMem [i]) {

emit (doneMem [i]) ;
}
for (j = 0 . . ProcessCount−1) {

if ((j==i) | writeMem [i]) {
// REMARK: no t i f y mixed ind i c e s .
FIFOpush [j] [i] [adrBus [i]] = true ;
FIFOinp [j] [i] [adrBus [i]] =

(writeMem [i] , i , adrBus [i] , dataBus [i]) ;
}

}
}

63

A. Quartz Implementations

}
| |
for (j = 0 . . ProcessCount−1) do | | { // FIFO

for (k = 0 . . MemSize−1) do | | {
always {

if (F IFOi s fu l l [i] [j] [k]) {
emit (someFIFOfull [j]) ;

}
}
| |
f i f o : FIFO(FIFOpop [i] [j] [k] , FIFOpush [i] [j] [k] , FIFOisempty [i] [j] [k] ,

F IFOi s fu l l [i] [j] [k] , FIFOinp [i] [j] [k] , FIFOoutp [i] [j] [k]) ;
}

}
| |
always { // Arb i t e r (Simply choose from NxM components)

let (o1 = o r a c l e [i])
let (o2 = ora c l e 2 [i])
{
// choose (o1 = 0 . . ProcessCount−1) choose (o2 = 0 . . MemSize−1) {

if (! FIFOisempty [i] [o1] [o2]) {
memIn [i] = (true , FIFOoutp [i] [o1] [o2]) ;
emit (FIFOpop [i] [o1] [o2]) ;

}
//}
}

}
| |
memunit : MemUnit(memIn [i] , r eadResu l t [i]) ;
| |
always {

if (readResu l t [i] . 0) {
emit (doneMem [i]) ;
dataBus [i] = readResu l t [i] . 2 ;

}
}

}
}

A.5. RefPRAM : PRAM Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels .RefPRAM;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFO ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefPRAM(
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated

64

A.5. RefPRAM : PRAM Consistency Reference Machine

[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event [ProcessCount] nat{ProcessCount} ? o r a c l e

) {
// FIFO

event [ProcessCount] [ProcessCount] bool FIFOpop ;
event [ProcessCount] [ProcessCount] bool FIFOpush ;
event [ProcessCount] [ProcessCount] bool FIFOisempty ;
event [ProcessCount] [ProcessCount] bool FIFOi s fu l l ;
// input : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOinp ;
// output : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOoutp ;

event [ProcessCount] bool someFIFOfull ;

// Arb i t e r
// output : i s s u e & (writeCommand & ta r g e t & va lue)
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) arb i terOut ;

// Memory Units
// memIn : v a l i d / i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) memIn ;
// readResu l t : v a l i d & or i g i n & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always {

// D i s t r i b u t o r : b roadcas t s wr i t e s to a l l connected FIFOs
// and sends reads to own FIFO

if (reqMem [i] & ! someFIFOfull [i]) {
emit (ackMem [i]) ;
if (writeMem [i]) {

emit (doneMem [i]) ;
}

for (j = 0 . . ProcessCount−1) {
if ((j==i) | writeMem [i]) {

// REMARK: no t i f y mixed ind i c e s .
FIFOpush [j] [i] = true ;
FIFOinp [j] [i] = (writeMem [i] , i , adrBus [i] , dataBus [i]) ;

}
}

}

}
| |
for (j = 0 . . ProcessCount−1) do | | { // FIFO

always {
if (F IFOi s fu l l [j] [i]) {

emit (someFIFOfull [i]) ;
}

}
| |
f i f o : FIFO(FIFOpop [i] [j] , FIFOpush [i] [j] , FIFOisempty [i] [j] ,

F IFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [i] [j]) ;
}
| |
always { // Arb i t e r (Simply choose from N components)

let (o1 = o r a c l e [i]) {
// choose (o1 = 0 . . ProcessCount−1) {

65

A. Quartz Implementations

if (! FIFOisempty [i] [o1]) {
memIn [i] = (true , FIFOoutp [i] [o1]) ;
emit (FIFOpop [i] [o1]) ;

}
//}
}

}
| |
memunit : MemUnit(memIn [i] , r eadResu l t [i]) ;
| |
always { // re turns memory un i t read r e s u l t to connected process

if (readResu l t [i] . 0) {
emit (doneMem [i]) ;
dataBus [i] = readResu l t [i] . 2 ;

}
}

}
}

A.6. RefCache : Cache Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefCache ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFO ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . MemUnitSingleCell ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefCache (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated f l a g s
[ProcessCount] bool ? terminated ,

// orac l e (replacement f o r choose)
event [MemSize] nat{ProcessCount} ? o r a c l e

) {
// FIFO

event [MemSize] [ProcessCount] bool FIFOpop ;
event [ProcessCount] [MemSize] bool FIFOpush ;
event [MemSize] [ProcessCount] bool FIFOisempty ;
event [ProcessCount] [MemSize] bool FIFOi s fu l l ;
// input : writeCommand & or i g i n & t a r g e t & va lue
event [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOinp ;
// output : writeCommand & or i g i n & t a r g e t & va lue
event [MemSize] [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOoutp ;

event [ProcessCount] bool someFIFOfull ;

// Memory Units

66

A.7. RefCausal : Causal Consistency Reference Machine

// memIn : v a l i d / i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event [MemSize] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) memIn ;
// readResu l t : v a l i d & or i g i n & va lue
event [MemSize] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always { // D i s t r i b u t o r (S p l i t memory c e l l s)

if (reqMem [i] & ! someFIFOfull [i]) {
emit (ackMem [i]) ;
if (writeMem [i]) {

emit (doneMem [i]) ;
}

FIFOpush [i] [adrBus [i]] = true ;
FIFOinp [i] [adrBus [i]] = (writeMem [i] , i , adrBus [i] , dataBus [i]) ;

}
}
| |
for (j = 0 . . MemSize−1) do | | {

always {
if (F IFOi s fu l l [i] [j]) {

emit (someFIFOfull [i]) ;
}

}
| |
// REMARK: no t i f y mixed ind i c e s .
f i f o : FIFO(FIFOpop [j] [i] , FIFOpush [i] [j] , FIFOisempty [j] [i] ,

F IFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [j] [i]) ;
}

}
| |
for (i = 0 . . MemSize−1) do | | {

always { // Arb i t e r (Simply choose from M components)
let (o1 = o r a c l e [i]) {
// choose (o1 = 0 . . ProcessCount−1) {

if (! FIFOisempty [i] [o1]) {
memIn [i] = (true , FIFOoutp [i] [o1]) ;
emit (FIFOpop [i] [o1]) ;

}
//}
}

}
| |
memunit : MemUnitSingleCell (memIn [i] , r eadResu l t [i]) ;
| |
always {

if (readResu l t [i] . 0) {
emit (doneMem [readResu l t [i] . 1]) ;
dataBus [readResu l t [i] . 1] = readResu l t [i] . 2 ;

}
}

}
}

A.7. RefCausal : Causal Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefCausal ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFOwClocks ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

67

A. Quartz Implementations

macro ProcessCount = 3 ;

macro MaxClock = 127 ;

module RefCausal (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
event [ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event [ProcessCount] nat{ProcessCount} ? o r a c l e

) {
// Clocks

[ProcessCount] [ProcessCount] nat{MaxClock} c l o c k s ;
event [ProcessCount] [ProcessCount] nat{MaxClock} tempclocks ;
event [ProcessCount] bool c l o c k g r e a t e r ;

// Dist
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth} ∗ [ProcessCount] nat{MaxClock})) d i s t I n ;
event [ProcessCount] [ProcessCount −1] (bool ∗ (bool ∗ nat{ProcessCount} ∗ →

nat{MemSize} ∗ bv{DataWidth} ∗ [ProcessCount] nat{MaxClock})) distOut ;

// FIFO
event [ProcessCount] [ProcessCount −1] bool FIFOpop ;
event [ProcessCount] [ProcessCount −1] bool FIFOpush ;
event [ProcessCount] [ProcessCount −1] bool FIFOisempty ;
event [ProcessCount] [ProcessCount −1] bool FIFOi s fu l l ;
// input : writeCommand & ta r g e t & va lue
event [ProcessCount] [ProcessCount −1] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} →

∗ bv{DataWidth} ∗ [ProcessCount] nat{MaxClock}) FIFOinp ;
// output : writeCommand & ta r g e t & va lue
event [ProcessCount] [ProcessCount −1] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} →

∗ bv{DataWidth} ∗ [ProcessCount] nat{MaxClock}) FIFOoutp ;

event [ProcessCount] bool someFIFOfull ;

// Mem
// input : i s s u e & (writeCommand & ta r g e t & va lue)
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) memIn ;
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always { // Arb i t e r

// choose (o1 = 0 . . ProcessCount−1) {
let (o1 = o r a c l e [i]) {

if (o1 == i) { // check f o r r/w
if (reqMem [i] & ! someFIFOfull [i]) {

emit (ackMem [i]) ;

// pass memory command to memory
memIn [i] = (true , (writeMem [i] , i , adrBus [i] , dataBus [i])) ;

if (writeMem [i]) {

68

A.7. RefCausal : Causal Consistency Reference Machine

emit (doneMem [i]) ;

for (k = 0 . . ProcessCount−1) {
if (k==i) {

tempclocks [i] [k] = c l o ck s [i] [k]+1;
} else {

tempclocks [i] [k] = c l o ck s [i] [k] ;
}

}

// Send wr i t e to FIFOs
d i s t I n [i] = (true ,

(writeMem [i] , i , adrBus [i] , dataBus [i] ,
tempclocks [i])) ;

next (c l o c k s [i]) = tempclocks [i] ;
} else {

// read : await memory response
immediate await (readResu l t [i] . 0) ;

}
}

} else if (o1 != i) { // check FIFO
let (o1m = (o1>=i & o1 !=0?o1−1:o1)) {

if (! FIFOisempty [i] [o1m]) {
let (c l o ck = FIFOoutp [i] [o1m] . 4) {

// check i f opera t ions c l o c k i s l e q than own c l o c k
for (k = 0 . . ProcessCount−1) {

if (k!=o1) {
if (c l o ck [k] > c l o c k s [i] [k]) {

emit (c l o c k g r e a t e r [i]) ;
}

}
}
if (! c l o c k g r e a t e r [i]) {

emit (FIFOpop [i] [o1m]) ;

// pass memory command to memory
memIn [i] = (true ,

(FIFOoutp [i] [o1m] . 0 , FIFOoutp [i] [o1m] . 1 ,
FIFOoutp [i] [o1m] . 2 , FIFOoutp [i] [o1m] . 3)) ;

// copy c l o c k o r i g i n component to own c l o ck
next (c l o c k s [i] [o1]) = c lo ck [o1] ;

}
}

}
}

}
}

}
| |
always { // DistBroadcastClockedW

if (d i s t I n [i] . 0) {
for (j = 0 . . ProcessCount−1) {

if (i != j) {
let (k = (j<=i & i !=0? i −1: i)) {

FIFOinp [j] [k] = d i s t I n [i] . 1 ;
emit (FIFOpush [j] [k]) ;

}
}

}
}

}
| |
for (j = 0 . . ProcessCount−2) do | | {

f i f o : FIFOwClocks (FIFOpop [i] [j] , FIFOpush [i] [j] , FIFOisempty [i] [j] ,
F IFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [i] [j]) ;

69

A. Quartz Implementations

if (F IFOi s fu l l [i] [j]) {
emit (someFIFOfull [(i>j ? j : j +1)]) ;

}
}
| |
memunit : MemUnit(memIn [i] , r eadResu l t [i]) ;
| |
always { // return read r e s u l t s

if (readResu l t [i] . 0) {
emit (doneMem [i]) ;
dataBus [i] = readResu l t [i] . 2 ;

}
}

}
}

A.8. RefProcessor : PC-G Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . Re fProcessor ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFOwClock ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

macro MaxClock = 127 ;

module RefProcessor (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event nat{ProcessCount} ? orac l e ,
event [ProcessCount] nat{MemSize} ? o r a c l e s 2

) {

// FIFO
event [ProcessCount] [MemSize] bool FIFOpop ;
event [ProcessCount] [MemSize] bool FIFOpush ;
event [ProcessCount] [MemSize] bool FIFOisempty ;
event [ProcessCount] [MemSize] bool FIFOi s fu l l ;
// input : writeCommand & or i g i n & t a r g e t & va lue & c l o ck
event [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth} ∗ nat{MaxClock}) FIFOinp ;
// output : writeCommand & or i g i n & t a r g e t & va lue & c l o ck
event [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth} ∗ nat{MaxClock}) FIFOoutp ;

event [MemSize] bool someFIFOfull ;

70

A.8. RefProcessor : PC-G Consistency Reference Machine

// Arb i t e r
[ProcessCount] nat{MaxClock} mainArbiterClocks ;
[ProcessCount] [ProcessCount] nat{MaxClock} subArbi terClocks ;
event [ProcessCount] (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth})) subArbiterOut ;

// Mem
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

always { // MainArbiter
// choose (o rac l e = 0 . . ProcessCount−1) {

if (reqMem [o r a c l e]) {
emit (ackMem [o r a c l e]) ;

let (adr = adrBus [o r a c l e])
let (data = dataBus [o r a c l e])
let (wr i t e = writeMem [o r a c l e])
let (read = readMem [o r a c l e])
{

if (wr i t e) {
immediate await (! someFIFOfull [adr]) ;
for (i = 0 . . ProcessCount−1) do | | {

FIFOinp [i] [adr] =
(true , o rac l e , adr , data , mainArbiterClocks [o r a c l e]) ;

emit (FIFOpush [i] [adr]) ;
}
emit (doneMem [o r a c l e]) ;
next (mainArbiterClocks [o r a c l e]) = mainArbiterClocks [o r a c l e]+1;

} else if (read) {
immediate await (! F IFOi s fu l l [o r a c l e] [adr]) ;
FIFOinp [o r a c l e] [adr] =

(false , o rac l e , adr , data , mainArbiterClocks [o r a c l e]) ;
emit (FIFOpush [o r a c l e] [adr]) ;

}
}

}
//}

}
| |
for (i = 0 . . ProcessCount−1) do | | {

for (j = 0 . . MemSize−1) do | | {
f i f o : FIFOwClock (FIFOpop [i] [j] , FIFOpush [i] [j] , FIFOisempty [i] [j] ,

F IFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [i] [j]) ;
| |
always {

if (F IFOi s fu l l [i] [j]) {
emit (someFIFOfull [j]) ;

}
}

}
| |
always { // SubArbi ter

// choose (orac l e2 = 0 . . ProcessCount−1) {
let (o r a c l e 2 = o r a c l e s 2 [i])
let (entry = FIFOoutp [i] [o r a c l e 2])
if (! FIFOisempty [i] [o r a c l e 2]) {

if (entry . 0) { // wr i t e
if (subArbi terClocks [i] [entry . 1] == entry . 4) {

subArbiterOut [i] = (true , (entry . 0 , entry . 1 , entry . 2 , entry . 3)) ;
emit (FIFOpop [i] [o r a c l e 2]) ;
next (subArbi terClocks [i] [entry . 1]) =

subArbi terClocks [i] [entry . 1]+1 ;
}

} else { // read
subArbiterOut [i] = (true , (entry . 0 , entry . 1 , entry . 2 , entry . 3)) ;

71

A. Quartz Implementations

emit (FIFOpop [i] [o r a c l e 2]) ;
}

}
//}

}
| |
memunit : MemUnit(subArbiterOut [i] , r eadResu l t [i]) ;
| |
always {

if (readResu l t [i] . 0) {
emit (doneMem [i]) ;
dataBus [i] = readResu l t [i] . 2 ;

}
}

}
}

A.9. RefPSO : PSO Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefPSO ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFOwReadForwarding ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefPSO(
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event nat{ProcessCount+1} ? orac l e ,
event nat{MemSize+1} ? o r a c l e 2

) {
// FIFOwReadForwarding i n t e r f a c e v a r i a b l e s

event [ProcessCount] [MemSize] bool FIFOpop ;
event [ProcessCount] [MemSize] bool FIFOpush ;
event [ProcessCount] [MemSize] bool FIFOisempty ;
event [ProcessCount] [MemSize] bool FIFOi s fu l l ;
// input : writeCommand & ta r g e t & va lue
event [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOinp ;
// output : writeCommand & ta r g e t & va lue
event [ProcessCount] [MemSize] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ →

bv{DataWidth}) FIFOoutp ;

// readIn : v a l i d & address
event [ProcessCount] [MemSize] (bool ∗ nat{MemSize}) FIFOreadIn ;
// readOut : succes s & va lue

72

A.9. RefPSO : PSO Consistency Reference Machine

event [ProcessCount] [MemSize] (bool ∗ bv{DataWidth}) FIFOreadOut ;

// Arb i t e r v a r i a b l e s
// a r b i t e r S e l e c t i o n : process which may proceed | a r b i t e r S e l e c t i o n == →

ProcessCount means i d l e
nat{ProcessCount+1} a r b i t e r S e l e c t i o n ;
// a r b i t e rBu f f e r S e l e c t i o n : process ’ b u f f e r which may wr i t e back | →

a r b i t e rBu f f e r S e l e c t i o n == MemSize means Read
nat{MemSize+1} a r b i t e rBu f f e r S e l e c t i o n ;

// Mem in t e r f a c e v a r i a b l e s
// memIn : v a l i d / i s s u e & (writeCommand & ta r g e t & va lue)
event (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth})) memIn ;
// readResu l t : v a l i d & i s s u e r & va lue)
event (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always { // StoreBuf f e r

if (reqMem [i]) {
emit (ackMem [i]) ;

if (writeMem [i]) { // wr i t e operat ion
immediate await (! F IFOi s fu l l [i] [adrBus [i]]) ;
FIFOinp [i] [adrBus [i]] = (true , i , adrBus [i] , dataBus [i]) ;
emit (FIFOpush [i] [adrBus [i]]) ;
emit (doneMem [i]) ;

}

if (readMem [i]) { // read operat ion
FIFOreadIn [i] [adrBus [i]] = (true , adrBus [i]) ;
if (FIFOreadOut [i] [adrBus [i]] . 0) {

dataBus [i] = FIFOreadOut [i] [adrBus [i]] . 1 ;
emit (doneMem [i]) ;

} else {
immediate await (a r b i t e r S e l e c t i o n == i

& a r b i t e rBu f f e r S e l e c t i o n == MemSize) ;
memIn = (true , (false , i , adrBus [i] , dataBus [i])) ;

}
}

}
}
| |
always { // StoreBuf f e r wr i t e back / f l u s h

if (a r b i t e r S e l e c t i o n == i & a rb i t e rBu f f e r S e l e c t i o n<MemSize) {
if (! FIFOisempty [i] [a r b i t e rBu f f e r S e l e c t i o n]) {

memIn = (true , (true , i , a r b i t e rBu f f e r S e l e c t i o n ,
FIFOoutp [i] [a r b i t e rBu f f e r S e l e c t i o n] . 3)) ;

}
}

}
| |
for (j = 0 . . MemSize−1) do | | {

f i f o : FIFOwReadForwarding (FIFOpop [i] [j] , FIFOpush [i] [j] , FIFOisempty [i] [j] ,
F IFOi s fu l l [i] [j] , FIFOinp [i] [j] , FIFOoutp [i] [j] ,
FIFOreadIn [i] [j] , FIFOreadOut [i] [j]) ;

}
}
| |
always { // Arb i t e r

// choose (o rac l e = 0 . . ProcessCount) {
a r b i t e r S e l e c t i o n = o r a c l e ;

//}
// choose (o rac l e = 0 . . ProcessCount) {

a r b i t e rBu f f e r S e l e c t i o n = ora c l e 2 ;
//}

}

73

A. Quartz Implementations

| |
memunit : MemUnit(memIn , readResu l t) ;
| |
always { // D i s t r i b u t e Completed Read Operations to the corresponding process

if (readResu l t . 0) {
dataBus [readResu l t . 1] = readResu l t . 2 ;
emit (doneMem [readResu l t . 1]) ;

}
}

}

A.10. RefTSO : TSO Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . RefTSO ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFOwReadForwarding ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefTSO(
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event nat{ProcessCount+1} ? orac l e ,
event bool ? o r a c l e 2

) {
// FIFOwReadForwarding i n t e r f a c e v a r i a b l e s

event [ProcessCount] bool FIFOpop ;
event [ProcessCount] bool FIFOpush ;
event [ProcessCount] bool FIFOisempty ;
event [ProcessCount] bool FIFOi s fu l l ;
// input : writeCommand & ta r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOinp ;
// output : writeCommand & ta r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOoutp ;

// readIn : v a l i d & address
event [ProcessCount] (bool ∗ nat{MemSize}) FIFOreadIn ;
// readOut : succes s & va lue
event [ProcessCount] (bool ∗ bv{DataWidth}) FIFOreadOut ;

// Arb i t e r v a r i a b l e s
// a r b i t e r S e l e c t i o n : process which may proceed

// | a r b i t e r S e l e c t i o n == ProcessCount means i d l e
nat{ProcessCount+1} a r b i t e r S e l e c t i o n ;

74

A.10. RefTSO : TSO Consistency Reference Machine

// arbiterReadInsteadOfWb : shou ld process read or do a WB
bool arbiterReadInsteadOfWb ;

// Mem in t e r f a c e v a r i a b l e s
// memIn : v a l i d / i s s u e & (writeCommand & ta r g e t & va lue)
event (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth})) memIn ;
// readResu l t : v a l i d & i s s u e r & va lue)
event (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
always { // StoreBuf f e r i n s e r t or read

if (reqMem [i]) {
emit (ackMem [i]) ;

if (writeMem [i]) { // wr i t e operat ion
immediate await (! F IFOi s fu l l [i]) ;
FIFOinp [i] = (true , i , adrBus [i] , dataBus [i]) ;
emit (FIFOpush [i]) ;
emit (doneMem [i]) ;

}

if (readMem [i]) { // read operat ion
FIFOreadIn [i] = (true , adrBus [i]) ;
if (FIFOreadOut [i] . 0) {

dataBus [i] = FIFOreadOut [i] . 1 ;
emit (doneMem [i]) ;

} else {
immediate await ((a r b i t e r S e l e c t i o n == i) & arbiterReadInsteadOfWb) ;
memIn = (true , (false , i , adrBus [i] , dataBus [i])) ;

}
}

}
}
| |
always { // StoreBuf f e r wr i t e back / f l u s h

immediate await (a r b i t e r S e l e c t i o n == i & ! arbiterReadInsteadOfWb
& ! FIFOisempty [i]) ;

memIn = (true , (true , i , FIFOoutp [i] . 2 , FIFOoutp [i] . 3)) ;
}
| |
f i f o : FIFOwReadForwarding (FIFOpop [i] , FIFOpush [i] , FIFOisempty [i] ,

F IFOi s fu l l [i] , FIFOinp [i] , FIFOoutp [i] , FIFOreadIn [i] , →
FIFOreadOut [i]) ;

}
| |
always { // Arb i t e r

// choose (o rac l e = 0 . . ProcessCount) {
a r b i t e r S e l e c t i o n = o r a c l e ;

//}

// choose {
// arbiterReadInsteadOfWb = true ;
//} e l s e {
// arbiterReadInsteadOfWb = f a l s e ;
//}
arbiterReadInsteadOfWb = ora c l e 2 ;

}
| |
memunit : MemUnit(memIn , readResu l t) ;
| |
always { // D i s t r i b u t e Completed Read Operations to the corresponding process

if (readResu l t . 0) {
dataBus [readResu l t . 1] = readResu l t . 2 ;
emit (doneMem [readResu l t . 1]) ;

}
}

75

A. Quartz Implementations

}

A.11. RefSequential : Sequential Consistency Reference Machine

package Arch i t e c tu r e . ConsistencyModels . Re fSequent ia l ;

import Arch i t e c tu r e . ConsistencyModels . S t ruc ture . FIFO ;
import Arch i t e c tu r e . ConsistencyModels . S t ruc ture .MemUnit ;

macro DataWidth = 8 ;
macro MemSize = 8 ;

macro ProcessCount = 3 ;

module RefSequent ia l (
// address f o r memory access
event [ProcessCount] nat{MemSize} ?adrBus ,
// data f o r memory access
event [ProcessCount] bv{DataWidth} dataBus ,
// whether data i s read or wr i t t en to memory
event [ProcessCount] bool ?readMem ,
event [ProcessCount] bool ?writeMem ,
// s i g n a l s f o r memory t ransac t i on
event [ProcessCount] bool ?reqMem ,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool ! doneMem ,

// processor terminated
[ProcessCount] bool ? terminated ,

// orac l e (choose replacement)
event nat{ProcessCount} ? o r a c l e

) {

// FIFO
event [ProcessCount] bool FIFOpop ;
event [ProcessCount] bool FIFOpush ;
event [ProcessCount] bool FIFOisempty ;
event [ProcessCount] bool FIFOi s fu l l ;
// input : writeCommand & ta r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOinp ;
// output : writeCommand & ta r g e t & va lue
event [ProcessCount] (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) →

FIFOoutp ;

// Mem
// memIn : v a l i d / i s s u e & (writeCommand & or i g i n & t a r g e t & va lue)
event (bool ∗ (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth})) memIn ;
// readResu l t : v a l i d & or i g i n & va lue
event (bool ∗ nat{ProcessCount} ∗ bv{DataWidth}) readResu l t ;

for (i = 0 . . ProcessCount−1) do | | {
f i f o : FIFO(FIFOpop [i] , FIFOpush [i] , FIFOisempty [i] ,

F IFOi s fu l l [i] , FIFOinp [i] , FIFOoutp [i]) ;
| |
always {

if (reqMem [i] & ! FIFOi s fu l l [i]) {
emit (ackMem [i]) ;

FIFOinp [i] = (writeMem [i] , i , adrBus [i] , dataBus [i]) ;
emit (FIFOpush [i]) ;

if (writeMem [i]) {
emit (doneMem [i]) ;

76

A.11. RefSequential : Sequential Consistency Reference Machine

}
}

}
}
| |
always {

let (o1 = o r a c l e) { // Arb i t e r (Simply choose from N components)
// choose (o1 = 0 . . ProcessCount−1) {

if (! FIFOisempty [o1]) {
memIn = (true , FIFOoutp [o1]) ;
emit (FIFOpop [o1]) ;

}
//}
}

}
| |
memunit : MemUnit(memIn , readResu l t) ;
| |
always { // D i s t r i b u t o r (d i s t r i b u t e s read r e s u l t s to corresponding process)

if (readResu l t . 0) {
emit (doneMem [readResu l t . 1]) ;
dataBus [readResu l t . 1] = readResu l t . 2 ;

}
}

}

77

Bibliography

[ABHN91] M. Ahamad, J.E. Burns, P.W. Hutto, and G. Neigher. Causal memory. In
S. Toueg, P.G. Spirakis, and L.M. Kirousis, editors, International Workshop on
Distributed Algorithms, volume 579 of LNCS, pages 9–30, Delphi, Greece, 1991.
Springer.

[ABJK+93] M. Ahamad, R.A. Bazzi, R. John, P. Kohli, and G. Neiger. The power of
processor consistency. In L. Snyder, editor, Symposium on Parallel Algorithms
and Architectures (SPAA), pages 251–260, Velen, Germany, 1993. ACM.

[AdGh96] S.V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, December 1996.

[AdHi93] S.V. Adve and M.D. Hill. A unified formalization of four shared-memory models.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 4(6):613–624,
June 1993.

[Adve93] S.V. Adve. Designing memory consistency models for shared-memory multipro-
cessors. PhD thesis, University of Wisconsin at Madison, 1993. UMI Order No.
GAX94-07354.

[BaBe97] J. Bataller and J.M. Bernabéu-Aubán. Synchronized DSM models. In
C. Lengauer, M. Griebl, and S. Gorlatch, editors, International Euro-Par Con-
ference (Euro-Par), volume 1300 of LNCS, pages 468–475, Passau, Germany,
1997. Springer.

[Berr00] G. Berry. The Esterel v5 language primer, July 2000.

[BoPe09] G. Boudol and G. Petri. Relaxed memory models: an operational approach. In
Z. Shao and B.C. Pierce, editors, Principles of Programming Languages (POPL),
pages 392–403, Savannah, Georgia, USA, 2009. ACM.

[Dijk68] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Pro-
gramming Languages: NATO Advanced Study Institute, pages 43–112. Academic
Press, 1968.

[Embe] University of Kaiserslautern Embedded Systems Group. The averest sys-
tem. http://www.averest.org/. Accessed: 2013.02.28 http://www.

webcitation.org/6ElcrkFBi, http://www.webcitation.org/6Eld430ft,
http://www.webcitation.org/6Eld430g3.

[GLLG+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J.L. Hen-
nessy. Memory consistency and event ordering in scalable shared memory mul-
tiprocessors. In International Symposium on Computer Architecture (ISCA),
pages 15–26, Seattle, Washington, USA, 1990. IEEE Computer Society.

[Good91] J.R. Goodman. Cache consistency and sequential consistency. Technical Re-
port 1006, Computer Sciences Department, University of Wisconsin-Madison,

79

http://www.averest.org/
http://www.webcitation.org/6ElcrkFBi
http://www.webcitation.org/6ElcrkFBi
http://www.webcitation.org/6Eld430ft
http://www.webcitation.org/6Eld430g3

Bibliography

February 1991.

[HeSi92] A. Heddaya and H. Sinha. Coherence, non-coherence and local consistency
in distributed shared memory for parallel computing. Technical Report BU-
CS-92-004, Department of Computer Science, Boston University, 1992. http:

//www.webcitation.org/6EnH7xvmI.

[HiKV98] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models –
part I: Definitions and comparisons. Technical Report 98/612/03, Department
of Computer Science, University of Calgary, 1998.

[HuAh90] P.W. Hutto and M. Ahamad. Slow memory: Weakening consistency to enchance
concurrency in distributed shared memories. In International Conference on
Distributed Computing Systems (ICDCS), pages 302–309, Paris, France, 1990.
IEEE Computer Society.

[HVML+04] S. Hangal, D. Vahia, C. Manovit, J.J. Lu, and S. Narayanan. TSOtool: A
program for verifying memory systems using the memory consistency model.
In International Symposium on Computer Architecture (ISCA), pages 114–123,
Munich, Germany, 2004. IEEE Computer Society.

[IA313] Intel Corporation. Intel 64 and IA-32 Architectures: Software Developer’s Man-
ual, January 2013. http://www.intel.com/products/processor/manuals/,
http://www.webcitation.org/6EuoyZmHU.

[IEEE96] IEEE. IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language. New York, New York, USA, 1996. IEEE Std.
1394-1995.

[IEEE05] IEEE. IEEE Standard SystemC Language Reference Manual. New York, New
York, USA, December 2005. IEEE Std. 1666-2005.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM (CACM), 21(7):558–565, 1978.

[Lamp79] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers (T-C), 28(9):690–691,
September 1979.

[LiSa88] R.J. Lipton and J.S. Sandberg. PRAM: A scalable shared memory. Technical
Report CS-TR-180-88, Princeton University, 1988.

[LiSa94] R.J. Lipton and J.S. Sandberg. Oblivious memory computer networking. Patent,
January 1994. US 5276806.

[LiWo11] A. Linden and P. Wolper. A verification based approach to memory fence inser-
tion in relaxed memory systems. In A. Groce and M. Musuvathi, editors, Model
Checking Software (SPIN), volume 6823 of LNCS, pages 144–160, Snowbird,
Utah, USA, 2011. Springer.

[LLGW+92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M.S. Lam. The Stanford Dash multiprocessor. IEEE Com-
puter, 25(3):63–79, 1992.

[LoCM06] P. Loewenstein, S. Chaudhry, and R. CypherC. Manovit. Multiproces-
sor memory model verification. Unpublished. Automated Formal Meth-

80

http://www.webcitation.org/6EnH7xvmI
http://www.webcitation.org/6EnH7xvmI
http://www.intel.com/products/processor/manuals/
http://www.webcitation.org/6EuoyZmHU

Bibliography

ods (AFM), FLoC Workshop 2006. http://fm.csl.sri.com/AFM06/papers/

4-Loewenstein.pdf, http://www.webcitation.org/6EleUJWBH, August 2006.

[McMi92] K.L. McMillan. The SMV system, symbolic model checking – an approach.
Technical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

[Moor92] P. Moorby. History of Verilog. IEEE Design and Test of Computers, pages
62–63, September 1992.

[Mosb93a] D. Mosberger. Memory consistency models. ACM SIGOPS: Operating Systems
Review, 27(1):18–26, January 1993.

[Mosb93b] D. Mosberger. Memory consistency models. Technical Report TR 93/11, De-
partment of Computer Science, The University of Arizona, Tucson, Arizona,
USA, 1993.

[OwSS09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in
Higher Order Logics (TPHOL), volume 5674 of LNCS, pages 391–407, Munich,
Germany, 2009. Springer.

[PaPa98] M.S. Papamarcos and J.H. Patel. A low-overhead coherence solution for multi-
processors with private cache memories. In 25 Years of the International Sym-
posia on Computer Architecture (ISCA), pages 284–290, Barcelona, Spain, 1998.
ACM.

[Schn09] K. Schneider. The synchronous programming language Quartz. Internal Report
375, Department of Computer Science, University of Kaiserslautern, Kaiser-
slautern, Germany, December 2009.

[SiFC92] P.S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal specification of memory
models. In M. Dubois and S.S. Thakkar, editors, Scalable Shared Memory Mul-
tiprocessors, pages 25–41. Kluwer, 1992.

[SPAR91] SPARC International. The SPARC Architecture Manual - Version 8. Prentice-
Hall, Inc., 1991.

[SSON+10] P. Sewell, S. Sarkar, S. Owens, F.Z. Nardelli, and M.O. Myreen. x86-TSO: A rig-
orous and usable programmer’s model for x86 multiprocessors. Communications
of the ACM (CACM), 53(7):89–97, July 2010.

[StNu04] R.C. Steinke and G.J. Nutt. A unified theory of shared memory consistency.
Journal of the ACM (JACM), 51(5):800–849, September 2004.

81

http://fm.csl.sri.com/AFM06/papers/4-Loewenstein.pdf
http://fm.csl.sri.com/AFM06/papers/4-Loewenstein.pdf
http://www.webcitation.org/6EleUJWBH

	Abstract
	Contents
	Introduction
	Related Work
	Consistency Models
	Local Consistency (LC)
	Slow Consistency
	Pipelined-RAM (PRAM) Consistency / Global Process Order (GPO)
	PRAM-M Consistency
	Cache Consistency (CC) / Global Data Order (GDO)
	Global Write-read-write Order (GWO)
	Global Anti-Order (GAO)
	Causal Consistency / GPO+GWO
	Processor Consistency by Goodman (PC-G)
	GPO + GDO Consistency
	Processor Consistency by DASH (PC-D)
	Partial Store Ordering (PSO)
	Total Store Ordering (TSO)
	Sequential Consistency (SC)
	Overview/Relationship

	Reference Machines
	Common Structural Elements
	Local Consistency Reference Machine
	Slow Consistency Reference Machine
	PRAM Consistency Reference Machine
	Cache Consistency Reference Machine
	Causal Consistency Reference Machine
	Processor (PC-G) Consistency Reference Machine
	PSO Consistency Reference Machine
	TSO Consistency Reference Machine
	Sequential Consistency Reference Machine

	Implementations
	Environment
	Interface
	Non-Determinism
	(Un)Bounded Buffer
	Improvements

	Conclusions and Further Work
	Quartz Implementations
	Remarks
	Shared modules
	RefLocal : Local Consistency Reference Machine
	RefSlow : Slow Consistency Reference Machine
	RefPRAM : PRAM Consistency Reference Machine
	RefCache : Cache Consistency Reference Machine
	RefCausal : Causal Consistency Reference Machine
	RefProcessor : PC-G Consistency Reference Machine
	RefPSO : PSO Consistency Reference Machine
	RefTSO : TSO Consistency Reference Machine
	RefSequential : Sequential Consistency Reference Machine

	Bibliography

